Microfluidic Devices Developed for and Inspired by Thermotaxis and Chemotaxis

Taxis has been reported in many cells and microorganisms, due to their tendency to migrate toward favorable physical situations and avoid damage and death. Thermotaxis and chemotaxis are two of the major types of taxis that naturally occur on a daily basis. Understanding the details of the thermo- and chemotactic behavioral response of cells and microorganisms is necessary to reveal the body function, diagnosing diseases and developing therapeutic treatments. Considering the length-scale and range of effectiveness of these phenomena, advances in microfluidics have facilitated taxis experiments and enhanced the precision of controlling and capturing microscale samples. Microfabrication of fluidic chips could bridge the gap between in vitro and in situ biological assays, specifically in taxis experiments. Numerous efforts have been made to develop, fabricate and implement novel microchips to conduct taxis experiments and increase the accuracy of the results. The concepts originated from thermo- and chemotaxis, inspired novel ideas applicable to microfluidics as well, more specifically, thermocapillarity and chemocapillarity (or solutocapillarity) for the manipulation of single- and multi-phase fluid flows in microscale and fluidic control elements such as valves, pumps, mixers, traps, etc. This paper starts with a brief biological overview of the concept of thermo- and chemotaxis followed by the most recent developments in microchips used for thermo- and chemotaxis experiments. The last section of this review focuses on the microfluidic devices inspired by the concept of thermo- and chemotaxis. Various microfluidic devices that have either been used for, or inspired by thermo- and chemotaxis are reviewed categorically.

[1]  G. Smith,et al.  Review of neutrophil adherence, chemotaxis, phagocytosis and killing. , 1983, Veterinary immunology and immunopathology.

[2]  Daniel Ramot,et al.  Thermotaxis is a Robust Mechanism for Thermoregulation in Caenorhabditis elegans Nematodes , 2008, The Journal of Neuroscience.

[3]  A. Brandis,et al.  Involvement of opsins in mammalian sperm thermotaxis , 2015, Scientific Reports.

[4]  Hatim A. Zariwala,et al.  Step Response Analysis of Thermotaxis in Caenorhabditis elegans , 2003, The Journal of Neuroscience.

[5]  Martin Pumera,et al.  Marangoni self-propelled capsules in a maze: pollutants 'sense and act' in complex channel environments. , 2014, Lab on a chip.

[6]  D. Clapham,et al.  Rheotaxis Guides Mammalian Sperm , 2013, Current Biology.

[7]  A. Luster,et al.  Chemokines--chemotactic cytokines that mediate inflammation. , 1998, The New England journal of medicine.

[8]  V. Valtsifer,et al.  Superposition of Translational and Rotational Motions under Self-Propulsion of Liquid Marbles Filled with Aqueous Solutions of Camphor. , 2017, Langmuir : the ACS journal of surfaces and colloids.

[9]  Atsuko Mizuno,et al.  Involvement of Transient Receptor Potential Vanilloid (TRPV) 4 in mouse sperm thermotaxis , 2016, The Journal of reproduction and development.

[10]  Beum Jun Kim,et al.  Microfluidics for Mammalian Cell Chemotaxis , 2011, Annals of Biomedical Engineering.

[11]  C. Brokaw Chemotaxis of Bracken Spermatozoids : The Role of Bimalate Ions , 1958 .

[12]  A. Scharmann,et al.  The periodic instability of thermocapillary convection in cylindrical liquid bridges , 1991 .

[13]  Sigurd Wagner,et al.  Thermocapillary actuation of droplets on chemically patterned surfaces by programmable microheater arrays , 2003 .

[14]  I. Puchades,et al.  Optical Micromirror Actuation using Thermocapillary Effect in Microdroplets , 2009, 2009 IEEE 22nd International Conference on Micro Electro Mechanical Systems.

[15]  A. Agarwal,et al.  Non-Invasive Sperm Selection for In Vitro Fertilization , 2015 .

[16]  R. Wunenburger,et al.  Laser switching and sorting for high speed digital microfluidics , 2008 .

[17]  S. Michelin,et al.  Self-propulsion of pure water droplets by spontaneous Marangoni-stress-driven motion. , 2014, Physical review letters.

[18]  Y Imae,et al.  Effect of temperature on motility and chemotaxis of Escherichia coli , 1976, Journal of bacteriology.

[19]  Lei Jiang,et al.  Bioinspired surfaces with special wettability. , 2005, Accounts of chemical research.

[20]  Tafti Ehsan Yakhsh Thermally-induced Motion Of Droplets On A Thin Liquid Layer And Its Application To Droplet Manipulation Platforms , 2010 .

[21]  L M Wakefield,et al.  Transforming growth factor type beta induces monocyte chemotaxis and growth factor production. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[22]  D. Weibel,et al.  Exploring Predatory Nematode Chemotaxis Using Low-Cost and Easy-to-Use Microfluidics , 2017, The American Biology Teacher.

[23]  François Gallaire,et al.  Laser-induced force on a microfluidic drop: origin and magnitude. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[24]  J. Qiao,et al.  Integration of sperm motility and chemotaxis screening with a microchannel-based device. , 2010, Clinical chemistry.

[25]  Bifeng Liu,et al.  Identification of the neuronal effects of ethanol on C. elegans by in vivo fluorescence imaging on a microfluidic chip , 2011, Analytical and bioanalytical chemistry.

[26]  P. Gao,et al.  Thermocapillary Motion Of Droplets At Large Marangoni Numbers , 2008 .

[27]  Aravinthan D. T. Samuel,et al.  The role of the AFD neuron in C. elegans thermotaxis analyzed using femtosecond laser ablation , 2006, BMC Neuroscience.

[28]  Ranganathan Kumar,et al.  Thermocapillarity in Microfluidics—A Review , 2016, Micromachines.

[29]  I. Mori,et al.  Neural regulation of thermotaxis in Caenorhabditis elegans , 1995, Nature.

[30]  Julien Marchalot,et al.  An optimized resistor pattern for temperature gradient control in microfluidics , 2009 .

[31]  E. Kodama,et al.  Distinct thermal migration behaviors in response to different thermal gradients in Caenorhabditis elegans , 2010, Genes, brain, and behavior.

[32]  X. Huang,et al.  Manipulation of a droplet in a planar channel by periodic thermocapillary actuation , 2008 .

[33]  Michael F. Schatz,et al.  EXPERIMENTS ON THERMOCAPILLARY INSTABILITIES , 2003 .

[34]  Greg F. Naterer,et al.  Surface tension and frictional resistance of thermocapillary pumping in a closed microchannel , 2006 .

[35]  Ran Liu,et al.  The construction of an interfacial valve-based microfluidic chip for thermotaxis evaluation of human sperm. , 2014, Biomicrofluidics.

[36]  Enas M. Ahmed,et al.  Hydrogel: Preparation, characterization, and applications: A review , 2013, Journal of advanced research.

[37]  A Sensitive C. elegans Chemotaxis Assay Using Microfluidic Device Generating a Linear Gradient of Chemoeffectors , 2015 .

[38]  M. Yamamoto,et al.  Plasticity of chemotaxis revealed by paired presentation of a chemoattractant and starvation in the nematode Caenorhabditis elegans. , 2001, The Journal of experimental biology.

[39]  S. Roy Caplan,et al.  Thermotaxis of Human Sperm Cells in Extraordinarily Shallow Temperature Gradients Over a Wide Range , 2012, PloS one.

[40]  H. Berg,et al.  Chemotaxis in Escherichia coli analysed by Three-dimensional Tracking , 1972, Nature.

[41]  R. Grigoriev,et al.  Chaotic mixing in microdroplets. , 2003, Lab on a chip.

[42]  I. Mori Genetics of chemotaxis and thermotaxis in the nematode Caenorhabditis elegans. , 1999, Annual review of genetics.

[43]  THERMOCAPILLARY MANIPULATION OF MICROFLUIDIC DROPLETS : THEORY AND APPLICATIONS , 2007 .

[44]  George M. Whitesides,et al.  Wet chemical approaches to the characterization of organic surfaces: self-assembled monolayers, wetting, and the physical-organic chemistry of the solid-liquid interface , 1990 .

[45]  Albert Libchaber,et al.  Effects of population density and chemical environment on the behavior of Escherichia coli in shallow temperature gradients. , 2011, Physical biology.

[46]  W. Mai,et al.  Thermotactic response of some plant parasitic nematodes. , 1969, Journal of nematology.

[47]  K. Mohseni,et al.  A Unified Velocity Model for Digital Microfluidics , 2007 .

[48]  François Gallaire,et al.  Thermocapillary valve for droplet production and sorting. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[49]  Sally H. Zigmond,et al.  Leukocyte locomotion and chemotaxis. New methods for evaluation, and demonstration of a cell-derived chemotactic factor. , 1973 .

[50]  R. Stocker,et al.  A microfluidics-based in situ chemotaxis assay to study the behaviour of aquatic microbial communities , 2017, Nature Microbiology.

[51]  J. Forrester,et al.  Inhibition of leukocyte locomotion by hyaluronic acid. , 1981, Journal of cell science.

[52]  Sreekanth H. Chalasani,et al.  Dissecting a circuit for olfactory behaviour in Caenorhabditis elegans , 2007, Nature.

[53]  Haim Breitbart,et al.  Thermotaxis of mammalian sperm cells: A potential navigation mechanism in the female genital tract , 2003, Nature Medicine.

[54]  David McGloin,et al.  Thermocapillary manipulation of droplets using holographic beam shaping: Microfluidic pin ball , 2008 .

[55]  P. Wilkinson Inhibition of leukocyte locomotion and chemotaxis by lipid-specific bacterial toxins , 1975, Nature.

[56]  M. Burns,et al.  Thermocapillary Pumping of Discrete Drops in Microfabricated Analysis Devices , 1999 .

[57]  J. Adler,et al.  Behavioral responses of Escherichia coli to changes in temperature caused by electric shock , 1993, Journal of Bacteriology.

[58]  Amar S. Basu,et al.  Virtual microfluidic traps, filters, channels and pumps using Marangoni flows , 2008 .

[59]  A M C E James Thomson,et al.  XLII. On certain curious motions observable at the surfaces of wine and other alcoholic liquors , 1855 .

[60]  Aravinthan D. T. Samuel,et al.  Thermotaxis in Caenorhabditis elegans Analyzed by Measuring Responses to Defined Thermal Stimuli , 2002, The Journal of Neuroscience.

[61]  H. Mao,et al.  A sensitive, versatile microfluidic assay for bacterial chemotaxis , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[62]  G. Nicolas [Periodontal diseases in the child and adolescent]. , 1972, Revue belge de medecine dentaire. Belgisch tijdschrift voor tandheelkunde.

[63]  Sarit K. Das,et al.  Interplay of chemical and thermal gradient on bacterial migration in a diffusive microfluidic device. , 2017, Biomicrofluidics.

[64]  Jyh-Chen Chen,et al.  Numerical study of a droplet migration induced by combined thermocapillary-buoyancy convection , 2010 .

[65]  Hartmut Löwen,et al.  Phototaxis of synthetic microswimmers in optical landscapes , 2016, Nature Communications.

[66]  S. Matsuyama,et al.  Thermotaxis, chemotaxis and age , 2006, AGE.

[67]  Alireza Nikfarjam,et al.  A new simple and fast thermally-solvent assisted method to bond PMMA–PMMA in micro-fluidics devices , 2016 .

[68]  Hans J. Rath,et al.  Convective instability mechanisms in thermocapillary liquid bridges , 1995 .

[69]  R. Miller,et al.  Chemotaxis during fertilization in the hydroid Campanularia. , 1966, The Journal of experimental zoology.

[70]  R. L. Russell,et al.  Normal and mutant thermotaxis in the nematode Caenorhabditis elegans. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[71]  F. Calahorro,et al.  Caenorhabditis elegans as an experimental tool for the study of complex neurological diseases: Parkinson’s disease, Alzheimer’s disease and autism spectrum disorder , 2011, Invertebrate Neuroscience.

[72]  Haihu Liu,et al.  Lattice Boltzmann phase-field modeling of thermocapillary flows in a confined microchannel , 2014, J. Comput. Phys..

[73]  S. Merajver,et al.  Single-cell Migration Chip for Chemotaxis-based Microfluidic Selection of Heterogeneous Cell Populations , 2015, Scientific Reports.

[74]  Y Imae,et al.  Thermosensory transduction in Escherichia coli: inhibition of the thermoresponse by L-serine. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[75]  Aravinthan D. T. Samuel,et al.  Bidirectional thermotaxis in Caenorhabditis elegans is mediated by distinct sensorimotor strategies driven by the AFD thermosensory neurons , 2014, Proceedings of the National Academy of Sciences.

[76]  Mingjie Liu,et al.  Nature-inspired superwettability systems , 2017 .

[77]  Thermally-actuated high speed droplet manipulation platform , 2011, 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference.

[78]  P. Wilkinson Leukocyte locomotion and chemotaxis: effects of bacteria and viruses. , 1980, Reviews of infectious diseases.

[79]  H. Hida,et al.  Chemotaxis assay of plant-parasitic nematodes on a gel-filled microchannel device , 2015 .

[80]  Yen-Chu Lin,et al.  Warm-Sensitive Neurons that Control Body Temperature , 2016, Cell.

[81]  H. Salman,et al.  Bacterial thermotaxis by speed modulation. , 2012, Biophysical journal.

[82]  Xiyun Lu,et al.  Numerical simulation of drop Marangoni migration under microgravity , 2004 .

[83]  Hyoung J. Cho,et al.  Droplet actuation on a liquid layer due to thermocapillary motion: Shape effect , 2010 .

[84]  Motofumi Suzuki,et al.  Investigation of transition from thermal- to solutal-Marangoni flow in dilute alcohol/water mixtures using nano-plasmonic heaters , 2018, Nanotechnology.

[85]  William H. Cade,et al.  Acoustically Orienting Parasitoids: Fly Phonotaxis to Cricket Song , 1975, Science.

[86]  W. Köhler,et al.  Thermocapillary and thermosolutal Marangoni convection of ethanol and ethanol–water mixtures in a microfluidic device , 2017 .

[87]  J. Korvink,et al.  Microfluidic laboratories for C. elegans enhance fundamental studies in biology , 2014 .

[88]  J. Adler Effect of Amino Acids and Oxygen on Chemotaxis in Escherichia coli , 1966, Journal of bacteriology.

[89]  H. Cho,et al.  Droplets on liquid surfaces: Dual equilibrium states and their energy barrier , 2013 .

[90]  P. Wilkinson,et al.  Assays of leukocyte locomotion and chemotaxis. , 1998, Journal of immunological methods.

[91]  Michael Eisenbach,et al.  Sperm thermotaxis , 2006, Molecular and Cellular Endocrinology.

[92]  R. Grigoriev,et al.  Mixing properties of steady flow in thermocapillary driven droplets , 2007 .

[93]  K. Maéda,et al.  Chemosensory and thermosensory excitation in adaptation-deficient mutants of Escherichia coli , 1984, Journal of bacteriology.

[94]  Donald L Riddle,et al.  Chemotaxis and Thermotaxis -- C. elegans II , 1997 .

[95]  P. Ormos,et al.  Microfluidic study of the chemotactic response of Escherichia coli to amino acids, signaling molecules and secondary metabolites. , 2015, Biomicrofluidics.

[96]  A. Lazzarin,et al.  Selective elevation of monocyte chemotactic protein-1 in the cerebrospinal fluid of AIDS patients with cytomegalovirus encephalitis. , 1996, The Journal of infectious diseases.

[97]  S. Hwang,et al.  Separation of Progressive Motile Sperm from Mouse Semen Using On-chip Chemotaxis , 2012, Analytical Sciences.

[98]  Numerical Simulation of Thermocapillary Pumping Using the Volume of Fluid Method , 2007 .

[99]  H. Cho,et al.  Discrete Droplet Manipulation on Liquid Platforms using Thermal Gradients , 2009 .

[100]  A. A. Darhuber,et al.  Planar digital nanoliter dispensing system based on thermocapillary actuation. , 2010, Lab on a chip.

[101]  M. Eisenbach,et al.  Human Sperm Thermotaxis Is Mediated by Phospholipase C and Inositol Trisphosphate Receptor Ca2+ Channel1 , 2008, Biology of reproduction.

[102]  I. Mori,et al.  Quantitative analysis of thermotaxis in the nematode Caenorhabditis elegans , 2006, Journal of Neuroscience Methods.

[103]  R. Toth,et al.  Maze solving using fatty acid chemistry. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[104]  Stephen H. Davis,et al.  Instabilities of dynamic thermocapillary liquid layers. Part 1. Convective instabilities , 1983, Journal of Fluid Mechanics.

[105]  Bifeng Liu,et al.  Microfluidic worm-chip for in vivo analysis of neuronal activity upon dynamic chemical stimulations. , 2011, Analytica chimica acta.

[106]  R. Toth,et al.  Maze solving using temperature-induced Marangoni flow , 2015 .

[107]  J. Adler Chemotaxis in Bacteria , 1966, Science.

[108]  Sarit K. Das,et al.  Effect of gold nanoparticles on thermal gradient generation and thermotaxis of E. coli cells in microfluidic device , 2016, Biomedical Microdevices.

[109]  Albert Libchaber,et al.  A concentration-dependent switch in the bacterial response to temperature , 2007, Nature Cell Biology.

[110]  Wen-rui Hu,et al.  Transient behavior of the thermocapillary migration of drops under the influence of deformation , 2011, 1107.0519.

[111]  Haihu Liu,et al.  Modelling thermocapillary migration of a microfluidic droplet on a solid surface , 2015, J. Comput. Phys..

[112]  H. Cho,et al.  Impact of drops on the surface of immiscible liquids. , 2010, Journal of colloid and interface science.

[113]  Vincent Miralles,et al.  Thermocapillary actuation by optimized resistor pattern: bubbles and droplets displacing, switching and trapping. , 2010, Lab on a chip.

[114]  E. Bormashenko,et al.  Self-Propulsion of Liquid Marbles: Leidenfrost-like Levitation Driven by Marangoni Flow , 2015, 1502.04292.

[115]  E. Russell,et al.  The Orientation of Animals , 1941, Nature.

[116]  J HIRSCH,et al.  Sign of Taxis as a Property of the Genotype , 1961, Science.

[117]  S. Bankoff,et al.  Long-wave instabilities of heated falling films: two-dimensional theory of uniform layers , 1991, Journal of Fluid Mechanics.

[118]  N. Voelcker,et al.  Recent developments in PDMS surface modification for microfluidic devices , 2010, Electrophoresis.

[119]  S. Benhamou,et al.  How animals use their environment: a new look at kinesis , 1989, Animal Behaviour.

[120]  Yuejun Zhao,et al.  Thermocapillary actuation of binary drops on solid surfaces , 2011 .

[121]  Nikos Chronis,et al.  An automated microfluidic platform for calcium imaging of chemosensory neurons in Caenorhabditis elegans. , 2010, Lab on a chip.

[122]  Motofumi Suzuki,et al.  Photothermally controlled Marangoni flow around a micro bubble , 2015 .

[123]  M. Goodman,et al.  Thermotaxis navigation behavior. , 2014, WormBook : the online review of C. elegans biology.

[124]  Jean-Pierre Delville,et al.  An optical toolbox for total control of droplet microfluidics. , 2007, Lab on a chip.

[125]  Ali Borhan,et al.  Thermocapillary motion of deformable drops at finite Reynolds and Marangoni numbers , 1997 .

[126]  Aravinthan D. T. Samuel,et al.  Running hot and cold: behavioral strategies, neural circuits, and the molecular machinery for thermotaxis in C. elegans and Drosophila. , 2010, Genes & development.

[127]  G. Whitesides,et al.  A paper-based invasion assay: assessing chemotaxis of cancer cells in gradients of oxygen. , 2015, Biomaterials.

[128]  W. Perloff,et al.  Some aspects of the chemical nature of human ovarian follicular fluid. , 1954, Fertility and sterility.

[129]  Michael O. Hengartner,et al.  Finding function in novel targets: C. elegans as a model organism , 2006, Nature Reviews Drug Discovery.

[130]  P. Sengupta,et al.  Degeneracy and Neuromodulation among Thermosensory Neurons Contribute to Robust Thermosensory Behaviors in Caenorhabditis elegans , 2011, The Journal of Neuroscience.

[131]  I. Zhulin,et al.  Aerotaxis and other energy-sensing behavior in bacteria. , 1999, Annual review of microbiology.

[132]  R. Balasubramaniam,et al.  Thermocapillary migration of droplets: an exact solution for small Marangoni numbers , 1987 .

[133]  J. Ramos,et al.  Diversity at its best: bacterial taxis. , 2011, Environmental microbiology.

[134]  Gregory T. A. Kovacs,et al.  A microfluidic shadow imaging system for the study of the nematode Caenorhabditis elegans in space , 2005 .

[135]  Bryn E. Gaertner,et al.  Microfluidic Devices for Analysis of Spatial Orientation Behaviors in Semi-Restrained Caenorhabditis elegans , 2011, PloS one.

[136]  J. C. Chen,et al.  Fast drop movements resulting from the phase change on a gradient surface. , 2001, Science.

[137]  S. Hardt,et al.  Thermocapillary flow on superhydrophobic surfaces. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[138]  L. Segel,et al.  Model for chemotaxis. , 1971, Journal of theoretical biology.

[139]  Roger D Kamm,et al.  A microfluidic platform for studying the effects of small temperature gradients in an incubator environment. , 2008, Biomicrofluidics.

[140]  J. Baret Surfactants in droplet-based microfluidics. , 2012, Lab on a chip.

[141]  T. E. Morthland,et al.  Instabilities of dynamic thermocapillary liquid layers with magnetic fields , 1999, Journal of Fluid Mechanics.

[142]  S. Zigmond,et al.  L E U K O C Y T E LOCOMOTION AND C H E M O T A X I S NEW METHODS FOR EVALUATION, AND DEMONSTRATION OF A CELL-DERIVED CHEMOTACTIC FACTOR* , 2003 .

[143]  B. Lin,et al.  Microfluidic platform for the study of Caenorhabditis elegans. , 2011, Topics in current chemistry.

[144]  O. Matar,et al.  Thermocapillary-driven motion of a sessile drop: effect of non-monotonic dependence of surface tension on temperature. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[145]  F. Heslot,et al.  Fingering instability of thin spreading films driven by temperature gradients , 1990, Nature.

[146]  Greg F. Naterer,et al.  Thermocapillary control of microfluidic transport with a stationary cyclic heat source , 2005 .

[147]  M. Eisenbach,et al.  Behavioral mechanism of human sperm in thermotaxis: a role for hyperactivation. , 2015, Human reproduction.

[148]  Cori Bargmann,et al.  Microfluidics for in vivo imaging of neuronal and behavioral activity in Caenorhabditis elegans , 2007, Nature Methods.

[149]  Haihu Liu,et al.  Modeling and simulation of thermocapillary flows using lattice Boltzmann method , 2012, J. Comput. Phys..

[150]  N. Wingreen,et al.  Mechanism of bidirectional thermotaxis in Escherichia coli , 2017, eLife.

[151]  Roman O. Grigoriev,et al.  Chaotic mixing in thermocapillary-driven microdroplets , 2005 .

[152]  Y Imae,et al.  Conditional inversion of the thermoresponse in Escherichia coli , 1984, Journal of bacteriology.

[153]  Dragos Amarie,et al.  Chemotaxis assays of mouse sperm on microfluidic devices. , 2006, Analytical chemistry.

[154]  M. Lappa,et al.  Marangoni flotation of liquid droplets , 2003, Journal of Fluid Mechanics.

[155]  Mahama A. Traore,et al.  Directed transport of bacteria-based drug delivery vehicles: bacterial chemotaxis dominates particle shape , 2014, Biomedical microdevices.

[156]  Sigurd Wagner,et al.  Capacitive sensing of droplets for microfluidic devices based on thermocapillary actuation. , 2004, Lab on a chip.

[157]  P. Gao,et al.  Thermocapillary migration of nondeformable drops , 2008 .

[158]  G. Sekhar,et al.  Thermocapillary drift on a spherical drop in a viscous fluid , 2013 .

[159]  S. G. Bankoff,et al.  Nonlinear stability of evaporating/condensing liquid films , 1988, Journal of Fluid Mechanics.

[160]  H. Zinsser,et al.  Evidence of chemotaxis as a factor in sperm motility. , 1958, Fertility and sterility.