Nanoprobes for intracellular and single cell surface-enhanced Raman spectroscopy (SERS)

Surface-enhanced Raman spectroscopy (SERS) is a promising and powerful label free technique for high resolution analysis of single cells. For intracellular analysis, there is a need for SERS-active nanoprobes that are minimally invasive to cells, do not affect cell viability, and provide reproducible signals. This work reviews the state-of-the-art tools currently available for intracellular SERS. Various types of SERS probes are considered, including colloidal gold and silver nanoparticles, metallized optical fibers, and tip-enhanced Raman probes. We also discuss recently developed SERS-active nanopipettes implemented on the basis of pulled glass microcapillaries. Finally, the critical aspects of selecting an optimal SERS nanoprobe for single-cell analysis depending on a particular application are summarized. Copyright © 2012 John Wiley & Sons, Ltd.

[1]  M. Albrecht,et al.  Anomalously intense Raman spectra of pyridine at a silver electrode , 1977 .

[2]  R. Dasari,et al.  Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS) , 1997 .

[3]  M. A. Strehle,et al.  The application of a SERS fiber probe for the investigation of sensitive biological samples. , 2004, The Analyst.

[4]  F. Lei,et al.  Intracellular applications of analytical SERS spectroscopy and multispectral imaging. , 2008, Chemical Society reviews.

[5]  Gerhard Ertl,et al.  Tip‐enhanced Raman spectroscopy (TERS) of malachite green isothiocyanate at Au(111): bleaching behavior under the influence of high electromagnetic fields , 2005 .

[6]  P. Ducheyne,et al.  Effects of Deposition Conditions on the Structure and Chemical Properties of Carbon Nanopipettes , 2009 .

[7]  E. K. Kemsley,et al.  Discriminant analysis of high-dimensional data: a comparison of principal components analysis and partial least squares data reduction methods , 1996 .

[8]  R. Lebel,et al.  Single cell transfection using plasmid decorated AFM probes. , 2007, Biochemical and biophysical research communications.

[9]  Jürgen Popp,et al.  Raman to the limit: tip‐enhanced Raman spectroscopic investigations of a single tobacco mosaic virus , 2009 .

[10]  S. Jewell,et al.  Copyright © American Society for Investigative Pathology Review Effect of Fixatives and Tissue Processing on the Content and Integrity of Nucleic Acids , 2022 .

[11]  M. Moskovits Surface‐enhanced Raman spectroscopy: a brief retrospective , 2005 .

[12]  R. G. Freeman,et al.  Preparation and Characterization of Au Colloid Monolayers , 1995 .

[13]  Michael S. Feld,et al.  Single-Molecule Detection of a Cyanine Dye in Silver Colloidal Solution Using Near-Infrared Surface-Enhanced Raman Scattering , 1998 .

[14]  Peter Nordlander,et al.  Optical properties of a nanosized hole in a thin metallic film. , 2008, ACS nano.

[15]  Satoshi Kawata,et al.  Near-field Raman imaging of organic molecules by an apertureless metallic probe scanning optical microscope , 2002 .

[16]  M. Manfait,et al.  Surface-enhanced Raman scattering reveals adsorption of mitoxantrone on plasma membrane of living cells. , 2004, Biochemical and Biophysical Research Communications - BBRC.

[17]  V. Kickhoefer,et al.  Targeting vault nanoparticles to specific cell surface receptors. , 2009, ACS nano.

[18]  F. Hobbs,et al.  Identification of a Novel Inhibitor of Mitogen-activated Protein Kinase Kinase* , 1998, The Journal of Biological Chemistry.

[19]  J. Hillier,et al.  A study of the nucleation and growth processes in the synthesis of colloidal gold , 1951 .

[20]  L. Rodríguez-Mañas,et al.  Evidence for Sodium Azide as an Artifact Mediating the Modulation of Inducible Nitric Oxide Synthase by C-Reactive Protein , 2005, Journal of cardiovascular pharmacology.

[21]  F. Marshall,et al.  In vivo molecular and cellular imaging with quantum dots. , 2005, Current opinion in biotechnology.

[22]  Stephan Link,et al.  Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles , 1999 .

[23]  Ka Wan Li,et al.  Differential Transport and Local Translation of Cytoskeletal, Injury-Response, and Neurodegeneration Protein mRNAs in Axons , 2005, The Journal of Neuroscience.

[24]  S. Efrima,et al.  Surface-enhanced Raman spectroscopy of bacteria: the effect of excitation wavelength and chemical modification of the colloidal milieu , 2005 .

[25]  Michael D. Morris,et al.  Micron Surface-Enhanced Raman Spectroscopy of Intact Biological Organisms and Model Systems , 1994 .

[26]  Haim H Bau,et al.  Carbon nanopipettes for cell probes and intracellular injection , 2008, Nanotechnology.

[27]  R. V. Van Duyne,et al.  Wavelength-scanned surface-enhanced Raman excitation spectroscopy. , 2005, The journal of physical chemistry. B.

[28]  Richard A. Keller,et al.  Single Molecule Detection in Solution , 2002 .

[29]  Janina Kneipp,et al.  In vivo molecular probing of cellular compartments with gold nanoparticles and nanoaggregates. , 2006, Nano letters.

[30]  Absar Ahmad,et al.  Role of halide ions and temperature on the morphology of biologically synthesized gold nanotriangles. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[31]  N. Halas,et al.  Correlation of molecular orientation and packing density in a dsDNA self-assembled monolayer observable with surface-enhanced Raman spectroscopy. , 2008, Journal of the American Chemical Society.

[32]  K. Kneipp,et al.  Optical probes for biological applications based on surface-enhanced Raman scattering from indocyanine green on gold nanoparticles. , 2005, Analytical chemistry.

[33]  B. Nikoobakht,et al.  種結晶を媒介とした成長法を用いた金ナノロッド(NR)の調製と成長メカニズム , 2003 .

[34]  George C. Schatz,et al.  Collective surface plasmon resonance coupling in silver nanoshell arrays , 2008 .

[35]  E. O’Shea,et al.  Global analysis of protein localization in budding yeast , 2003, Nature.

[36]  Balaprasad Ankamwar,et al.  Biological synthesis of triangular gold nanoprisms , 2004, Nature materials.

[37]  D. Meisel,et al.  Adsorption and surface-enhanced Raman of dyes on silver and gold sols , 1982 .

[38]  R. Zenobi,et al.  Nanoscale chemical analysis by tip-enhanced Raman spectroscopy , 2000 .

[39]  Samuel Hoffmann,et al.  Nanowires enabling signal-enhanced nanoscale Raman spectroscopy. , 2008, Small.

[40]  Christy L. Haynes,et al.  Plasmon-Sampled Surface-Enhanced Raman Excitation Spectroscopy † , 2003 .

[41]  Yury Gogotsi,et al.  Magnetically assembled carbon nanotube tipped pipettes , 2007 .

[42]  Andreas Otto,et al.  On the nature of ``sers active sites'' , 1985 .

[43]  S. Franzen,et al.  Multifunctional gold nanoparticle-peptide complexes for nuclear targeting. , 2003, Journal of the American Chemical Society.

[44]  R. Birke,et al.  Time-dependent picture of the charge-transfer contributions to surface enhanced Raman spectroscopy. , 2007, The Journal of chemical physics.

[45]  Jimmy Xu,et al.  Carbon nanotube probes for single-cell experimentation and assays , 2005 .

[46]  Xiaohua Huang,et al.  Peptide-conjugated gold nanorods for nuclear targeting. , 2007, Bioconjugate chemistry.

[47]  R. V. Van Duyne,et al.  Electrochemical tuning of silver nanoparticles fabricated by nanosphere lithography. , 2005, Nano letters.

[48]  Bong-Hyun Jun,et al.  Nanoparticle probes with surface enhanced Raman spectroscopic tags for cellular cancer targeting. , 2006, Analytical chemistry.

[49]  K. Kneipp,et al.  One- and two-photon excited optical ph probing for cells using surface-enhanced Raman and hyper-Raman nanosensors. , 2007, Nano letters.

[50]  S. Suh,et al.  Surface‐enhanced Raman scattering (SERS) of nucleic acid components in silver sol: Adenine series , 1986 .

[51]  R. Maher,et al.  On the experimental estimation of surface enhanced raman scattering (SERS) cross sections by vibrational pumping. , 2006, The journal of physical chemistry. B.

[52]  S. Kawata,et al.  Towards atomic site-selective sensitivity in tip-enhanced Raman spectroscopy. , 2006, The Journal of chemical physics.

[53]  Steven R. Emory,et al.  Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering , 1997, Science.

[54]  Younan Xia,et al.  Large-scale synthesis of silver nanocubes: the role of HCl in promoting cube perfection and monodispersity. , 2005, Angewandte Chemie.

[55]  R. Zenobi,et al.  Single Molecule Tip-Enhanced Raman Spectroscopy with Silver Tips , 2007 .

[56]  L. Novotný,et al.  Near‐field Raman spectroscopy using a sharp metal tip , 2003, Journal of microscopy.

[57]  Wei Qian,et al.  Cancer cells assemble and align gold nanorods conjugated to antibodies to produce highly enhanced, sharp, and polarized surface Raman spectra: a potential cancer diagnostic marker. , 2007, Nano letters.

[58]  Jürgen Popp,et al.  SERS: a versatile tool in chemical and biochemical diagnostics , 2008, Analytical and bioanalytical chemistry.

[59]  Anders Lorén,et al.  Surface-enhanced Raman scattering imaging of single living lymphocytes with multivariate evaluation. , 2005, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[60]  Michael S. Feld,et al.  Surface-Enhanced Raman Spectroscopy in Single Living Cells Using Gold Nanoparticles , 2002 .

[61]  P. Etchegoin,et al.  On the connection between optical absorption/extinction and SERS enhancements. , 2006, Physical chemistry chemical physics : PCCP.

[62]  Naomi J. Halas,et al.  Nanoengineering of optical resonances , 1998 .

[63]  A Paul Alivisatos,et al.  Calibration of dynamic molecular rulers based on plasmon coupling between gold nanoparticles. , 2005, Nano letters.

[64]  P. Schwille,et al.  Accessing Molecular Dynamics in Cells by Fluorescence Correlation Spectroscopy , 2001, Biological chemistry.

[65]  Andreas Otto,et al.  The ‘chemical’ (electronic) contribution to surface‐enhanced Raman scattering , 2005 .

[66]  J. Aaron,et al.  Fluorescence studies of anti-cancer drugs--analytical and biomedical applications. , 2006, Current drug targets.

[67]  George C. Schatz,et al.  Silver nanoparticle array structures that produce giant enhancements in electromagnetic fields , 2005 .

[68]  George C Schatz,et al.  Using theory and computation to model nanoscale properties , 2007, Proceedings of the National Academy of Sciences.

[69]  M. Moskovits Surface-enhanced spectroscopy , 1985 .

[70]  Keith T. Carron,et al.  Surface-enhanced Raman spectroscopy with abrasively modified fiber optic probes , 1991 .

[71]  J. West,et al.  Immunotargeted nanoshells for integrated cancer imaging and therapy. , 2005, Nano letters.

[72]  D. Ben‐Amotz,et al.  Oligosaccharide identification and mixture quantification using Raman spectroscopy and chemometric analysis. , 2004, Carbohydrate research.

[73]  Augustus W Fountain,et al.  Classification of Chemical and Biological Warfare Agent Simulants by Surface-Enhanced Raman Spectroscopy and Multivariate Statistical Techniques , 2006, Applied spectroscopy.

[74]  Elodie Boisselier,et al.  Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. , 2009, Chemical Society reviews.

[75]  Royston Goodacre,et al.  Surface-enhanced Raman spectroscopy for bacterial discrimination utilizing a scanning electron microscope with a Raman spectroscopy interface. , 2004, Analytical chemistry.

[76]  L. A. Baker,et al.  Applications of nanopipettes in the analytical sciences. , 2010, The Analyst.

[77]  Y. Gogotsi,et al.  Multifunctional carbon nanotubes with nanoparticles embedded in their walls , 2007 .

[78]  Mostafa A. El-Sayed,et al.  Preparation and Growth Mechanism of Gold Nanorods (NRs) Using Seed-Mediated Growth Method , 2003 .

[79]  C. Bertozzi,et al.  A cell nanoinjector based on carbon nanotubes , 2007, Proceedings of the National Academy of Sciences.

[80]  Michael R. Philpott,et al.  Effect of surface plasmons on transitions in molecules , 1975 .

[81]  Jürgen Popp,et al.  Towards a specific characterisation of components on a cell surface—combined TERS‐investigations of lipids and human cells , 2009 .

[82]  Jennifer Sturgis,et al.  A cellular Trojan Horse for delivery of therapeutic nanoparticles into tumors. , 2007, Nano letters.

[83]  W. Webb,et al.  Molecular dynamics in living cells observed by fluorescence correlation spectroscopy with one- and two-photon excitation. , 1999, Biophysical journal.

[84]  Y. Gogotsi,et al.  In situ intracellular spectroscopy with surface enhanced Raman spectroscopy (SERS)-enabled nanopipettes. , 2009, ACS nano.

[85]  G. Schatz,et al.  Electromagnetic fields around silver nanoparticles and dimers. , 2004, The Journal of chemical physics.

[86]  J Popp,et al.  Identification of biotic and abiotic particles by using a combination of optical tweezers and in situ Raman spectroscopy. , 2004, Chemphyschem : a European journal of chemical physics and physical chemistry.

[87]  Danh V. Nguyen,et al.  Tumor classification by partial least squares using microarray gene expression data , 2002, Bioinform..

[88]  A. Campion,et al.  Surface-enhanced Raman scattering , 1998 .

[89]  Naomi J. Halas,et al.  Surface enhanced Raman scattering in the near infrared using metal nanoshell substrates , 1999 .

[90]  Z. Surviladze,et al.  Revealing the topography of cellular membrane domains by combined atomic force microscopy/fluorescence imaging. , 2006, Biophysical journal.

[91]  Volker Deckert,et al.  Optical spectroscopy and laser desorption on a nanometer scale , 1997 .

[92]  M. Kneussel,et al.  Microinjection into cultured hippocampal neurons: A straightforward approach for controlled cellular delivery of nucleic acids, peptides and antibodies , 2008, Journal of Neuroscience Methods.

[93]  Yury Gogotsi,et al.  Multifunctional carbon-nanotube cellular endoscopes. , 2011, Nature nanotechnology.

[94]  Gerhard Ertl,et al.  Surface-enhanced and STM-tip-enhanced Raman spectroscopy at metal surfaces , 2002 .

[95]  K. Dholakia,et al.  Nanoshells for surface-enhanced Raman spectroscopy in eukaryotic cells: cellular response and sensor development. , 2009, ACS nano.

[96]  A. Haes,et al.  Probing cells with noble metal nanoparticle aggregates. , 2008, Nanomedicine.

[97]  M. Manfait,et al.  Selective analysis of antitumor drug interaction with living cancer cells as probed by surface-enhanced Raman spectroscopy , 2004, European Biophysics Journal.

[98]  K. Kneipp,et al.  SERS--a single-molecule and nanoscale tool for bioanalytics. , 2008, Chemical Society reviews.

[99]  Volker Deckert,et al.  Surface- and tip-enhanced Raman scattering of DNA components† , 2006 .

[100]  Katherine A. Willets,et al.  Surface-enhanced Raman scattering (SERS) for probing internal cellular structure and dynamics , 2009, Analytical and bioanalytical chemistry.

[101]  L. Svaasand,et al.  Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy. , 2000, Neoplasia.

[102]  Naomi J Halas,et al.  Engineered nanomaterials for biophotonics applications: improving sensing, imaging, and therapeutics. , 2003, Annual review of biomedical engineering.

[103]  Haim H. Bau,et al.  Cell electrophysiology with carbon nanopipettes. , 2009, ACS nano.

[104]  R Zenobi,et al.  Near-Field Surface-Enhanced Raman Imaging of Dye-Labeled DNA with 100-nm Resolution. , 1998, Analytical chemistry.

[105]  R. McCreery,et al.  Raman Spectroscopy for Chemical Analysis: McCreery/Raman Spectroscopy , 2005 .

[106]  R. Dasari,et al.  Surface‐Enhanced Raman Scattering (SERS) – A Tool for Single Molecule Detection in Solution , 2003 .

[107]  V. Subramaniam,et al.  The use of fluorescent dyes and probes in surgical oncology. , 2010, European journal of surgical oncology : the journal of the European Society of Surgical Oncology and the British Association of Surgical Oncology.

[108]  S. Kawata,et al.  Metallized tip amplification of near-field Raman scattering , 2000 .

[109]  M. del Río,et al.  Changes in adsorption and permeability of mitoxantrone on plasma membrane of BCRP/MXR resistant cells. , 2005, Biochemical and biophysical research communications.

[110]  Din Ping Tsai,et al.  Raman spectroscopy using a fiber optic probe with subwavelength aperture , 1994 .

[111]  Ewan Polwart,et al.  Novel SERS-Active Optical Fibers Prepared by the Immobilization of Silver Colloidal Particles , 2000 .

[112]  Tuan Vo-Dinh,et al.  SERS-based plasmonic nanobiosensing in single living cells , 2009, Analytical and bioanalytical chemistry.

[113]  Thomas Huser,et al.  Intracellular pH sensors based on surface-enhanced raman scattering. , 2004, Analytical chemistry.

[114]  P G Etchegoin,et al.  A perspective on single molecule SERS: current status and future challenges. , 2008, Physical chemistry chemical physics : PCCP.

[115]  P. Sorger,et al.  Non-genetic origins of cell-to-cell variability in TRAIL-induced apoptosis , 2009, Nature.

[116]  M. El-Sayed,et al.  Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods , 1999 .

[117]  Jürgen Popp,et al.  Towards a detailed understanding of bacterial metabolism--spectroscopic characterization of Staphylococcus epidermidis. , 2007, Chemphyschem : a European journal of chemical physics and physical chemistry.

[118]  Richard L. McCreery,et al.  Raman Spectroscopy for Chemical Analysis , 2000 .

[119]  Martin Moskovits,et al.  Surface-Enhanced Raman Spectroscopy and Nanogeometry: The Plasmonic Origin of SERS , 2007 .

[120]  Yanli Liu,et al.  Cellular trajectories of peptide-modified gold particle complexes: comparison of nuclear localization signals and peptide transduction domains. , 2004, Bioconjugate chemistry.

[121]  Scott C. Brown,et al.  Penetration of living cell membranes with fortified carbon nanotube tips. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[122]  Yury Gogotsi,et al.  Small diameter carbon nanopipettes , 2010, Nanotechnology.

[123]  M. Manfait,et al.  Intracellular molecular interactions of antitumor drug amsacrine (m‐AMSA) as revealed by surface‐enhanced Raman spectroscopy , 1996, FEBS letters.