A rapid estimation and sensitivity analysis of parameters describing the behavior of commercial Li-ion batteries including thermal analysis

[1]  P. Taheri,et al.  Theoretical Analysis of Potential and Current Distributions in Planar Electrodes of Lithium-ion Batteries , 2014 .

[2]  Jason B. Siegel,et al.  A lumped-parameter electro-thermal model for cylindrical batteries , 2014 .

[3]  Li Jia,et al.  Two-dimensional electrochemical–thermal coupled modeling of cylindrical LiFePO4 batteries , 2014 .

[4]  Yuanyuan Xie,et al.  Mathematical modeling of the electrochemical impedance spectroscopy in lithium ion battery cycling , 2014 .

[5]  Naoki Baba,et al.  Numerical simulation of thermal behavior of lithium-ion secondary batteries using the enhanced single particle model , 2014 .

[6]  Chris Yuan,et al.  Multiphysics modeling of lithium ion battery capacity fading process with solid-electrolyte interphase growth by elementary reaction kinetics , 2014 .

[7]  An explicit algebraic reduced order algorithm for lithium ion cell voltage prediction , 2014 .

[8]  N. Omar,et al.  Development of an Advanced Two-Dimensional Thermal Model for Large size Lithium-ion Pouch Cells , 2014 .

[9]  N. Omar,et al.  Lithium iron phosphate based battery: Assessment of the aging parameters and development of cycle life model , 2014 .

[10]  Jochen Zausch,et al.  Thermodynamic derivation of a Butler-Volmer model for intercalation in Li-ion batteries , 2013 .

[11]  Sebastian Paul,et al.  Analysis of ageing inhomogeneities in lithium-ion battery systems , 2013 .

[12]  Giorgio Rizzoni,et al.  Design and parametrization analysis of a reduced-order electrochemical model of graphite/LiFePO4 cells for SOC/SOH estimation , 2013 .

[13]  Rui Liu,et al.  Numerical and analytical modeling of lithium ion battery thermal behaviors with different cooling designs , 2013 .

[14]  Song-Yul Choe,et al.  Reduced order model (ROM) of a pouch type lithium polymer battery based on electrochemical thermal principles for real time applications , 2013 .

[15]  Song-Yul Choe,et al.  Modeling, validation and analysis of mechanical stress generation and dimension changes of a pouch type high power Li-ion battery , 2013 .

[16]  Cong Zhu,et al.  Development of a theoretically based thermal model for lithium ion battery pack , 2013 .

[17]  S. Raël,et al.  Using electrical analogy to describe mass and charge transport in lithium-ion batteries , 2013 .

[18]  V. Senthil Kumar,et al.  Reduced order model for a lithium ion cell with uniform reaction rate approximation , 2013 .

[19]  Andrew Chemistruck,et al.  One-dimensional physics-based reduced-order model of lithium-ion dynamics , 2012 .

[20]  Hongwen He,et al.  Comparison study on the battery models used for the energy management of batteries in electric vehicles , 2012 .

[21]  Xiaofeng Mao,et al.  Modeling of combined capacity fade with thermal effects for a cycled LixC6–LiyMn2O4 cell , 2012 .

[22]  Ken Darcovich,et al.  Modelling the impact of variations in electrode manufacturing on lithium-ion battery modules , 2012 .

[23]  N. Omar,et al.  Rechargeable Energy Storage Systems for Plug-in Hybrid Electric Vehicles—Assessment of Electrical Characteristics , 2012 .

[24]  Richard D. Braatz,et al.  Model-based simultaneous optimization of multiple design parameters for lithium-ion batteries for maximization of energy density , 2012, 2012 American Control Conference (ACC).

[25]  Xiangming He,et al.  Electro-thermal modeling and experimental validation for lithium ion battery , 2012 .

[26]  Gang Yang,et al.  Lithium diffusion behavior and improved high rate capacity of LiNi1/3Co1/3Mn1/3O2 as cathode material for lithium batteries , 2012 .

[27]  Zhonghao Rao,et al.  Simulation and experiment of thermal energy management with phase change material for ageing LiFePO4 power battery , 2011 .

[28]  M. Safari,et al.  Aging of a Commercial Graphite/LiFePO4 Cell , 2011 .

[29]  D. Jeon,et al.  Thermal modeling of cylindrical lithium ion battery during discharge cycle , 2011 .

[30]  K. Tsang,et al.  Identification and modelling of Lithium ion battery , 2010 .

[31]  L. Guzzella,et al.  Experiment-driven electrochemical modeling and systematic parameterization for a lithium-ion battery cell , 2010 .

[32]  W. Shyy,et al.  Effect of cycling rate, particle size and transport properties on lithium-ion cathode performance , 2010 .

[33]  M. Pritzker,et al.  EIS Study of Nickel Deposition in Borate–Sulfate Solutions , 2010 .

[34]  Jorge Vazquez-Arenas,et al.  Experimental and modeling analysis of the formation of cuprous intermediate species formed during the copper deposition on a rotating disk electrode , 2010 .

[35]  Electrochemical performance of Li(NMC)O2 cathode materials for Li-ion batteries , 2010 .

[36]  Xuezhe Wei,et al.  Internal Resistance Identification in Vehicle Power Lithium-Ion Battery and Application in Lifetime Evaluation , 2009, 2009 International Conference on Measuring Technology and Mechatronics Automation.

[37]  M. Yoshio,et al.  Lithium-ion batteries , 2009 .

[38]  V. Subramanian,et al.  Towards real-time (milliseconds) parameter estimation of lithium-ion batteries using reformulated physics-based models , 2008 .

[39]  Chaoyang Wang,et al.  Control oriented 1D electrochemical model of lithium ion battery , 2007 .

[40]  Mark Pritzker,et al.  EIS and statistical analysis of copper electrodeposition accounting for multi-component transport and reactions , 2006 .

[41]  Ralph E. White,et al.  A generalized cycle life model of rechargeable Li-ion batteries , 2006 .

[42]  Lars Ole Valøen,et al.  Transport Properties of LiPF6-Based Li-Ion Battery Electrolytes , 2005 .

[43]  S. Pejovnik,et al.  Impact of the Carbon Coating Thickness on the Electrochemical Performance of LiFePO4 / C Composites , 2005 .

[44]  Venkat Srinivasan,et al.  Discharge Model for the Lithium Iron-Phosphate Electrode , 2004 .

[45]  De-cheng Li,et al.  Effect of synthesis method on the electrochemical performance of LiNi1/3Mn1/3Co1/3O2 , 2004 .

[46]  B. Cho,et al.  Effect of Al2O3 coating on electrochemical performance of LiCoO2 as cathode materials for secondary lithium batteries , 2004 .

[47]  B. Jung,et al.  Effects of metal oxide coatings on the thermal stability and electrical performance of LiCoCO2 in a Li-ion cell , 2004 .

[48]  Peter Y. Zavalij,et al.  The synthesis, characterization and electrochemical behavior of the layered LiNi0.4Mn0.4Co0.2O2 compound , 2004 .

[49]  Ralph E. White,et al.  Mathematical modeling of the capacity fade of Li-ion cells , 2003 .

[50]  Gerbrand Ceder,et al.  A Combined Computational/Experimental Study on LiNi1/3Co1/3Mn1/3O2 , 2003 .

[51]  Marc Doyle,et al.  Computer Simulations of a Lithium-Ion Polymer Battery and Implications for Higher Capacity Next-Generation Battery Designs , 2003 .

[52]  J. Newman,et al.  Heats of mixing and of entropy in porous insertion electrodes , 2003 .

[53]  G. Pistoia,et al.  Lithium batteries : science and technology , 2003 .

[54]  Daniel P. Abraham,et al.  Layered Li(Ni0.5−xMn0.5−xM2x′)O2 (M′=Co, Al, Ti; x=0, 0.025) cathode materials for Li-ion rechargeable batteries , 2002 .

[55]  Y. Chiang,et al.  Electronically conductive phospho-olivines as lithium storage electrodes , 2002, Nature materials.

[56]  B. Scrosati,et al.  Advances in lithium-ion batteries , 2002 .

[57]  Linda F. Nazar,et al.  Approaching Theoretical Capacity of LiFePO4 at Room Temperature at High Rates , 2001 .

[58]  F. E. Little,et al.  Charge–discharge stability of graphite anodes for lithium-ion batteries , 2001 .

[59]  P. Novák,et al.  Electrochemical SPM investigation of the solid electrolyte interphase film formed on HOPG electrodes , 2000 .

[60]  J. Selman,et al.  Thermal modeling and design considerations of lithium-ion batteries , 1999 .

[61]  Young-Il Jang,et al.  TEM Study of Electrochemical Cycling‐Induced Damage and Disorder in LiCoO2 Cathodes for Rechargeable Lithium Batteries , 1999 .

[62]  Petr Novák,et al.  Insertion Electrode Materials for Rechargeable Lithium Batteries , 1998 .

[63]  Li Hong,et al.  Irreversible capacity loss of graphite electrode in lithium-ion batteries , 1997 .

[64]  K. S. Nanjundaswamy,et al.  Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries , 1997 .

[65]  Michael M. Thackeray,et al.  Manganese oxides for lithium batteries , 1997 .

[66]  J. Tarascon,et al.  Comparison of Modeling Predictions with Experimental Data from Plastic Lithium Ion Cells , 1996 .

[67]  J. Dahn,et al.  Thermal stability of LixCoO2, LixNiO2 and λ-MnO2 and consequences for the safety of Li-ion cells , 1994 .