Microphysical Properties of Snow and Their Link to Ze–S Relations during BAECC 2014

AbstractThis study uses snow events from the Biogenic Aerosols–Effects on Clouds and Climate (BAECC) 2014 campaign to investigate the connection between properties of snow and radar observations. The general hydrodynamic theory is applied to video-disdrometer measurements to retrieve masses of falling ice particles. Errors associated with the observation geometry and the measured particle size distribution (PSD) are addressed by devising a simple correction procedure. The value of the correction factor is determined by comparison of the retrieved precipitation accumulation with weighing-gauge measurements. Derived mass–dimensional relations are represented in the power-law form m = . It is shown that the retrieved prefactor am and exponent bm react to changes in prevailing microphysical processes. From the derived microphysical properties, event-specific relations between the equivalent reflectivity factor Ze and snowfall precipitation rate S (Ze = ) are determined. For the studied events, the prefactor o...

[1]  A. Heymsfield,et al.  Advances in the Estimation of Ice Particle Fall Speeds Using Laboratory and Field Measurements , 2010 .

[2]  Louis J. Battan,et al.  Radar Observation of the Atmosphere , 1973 .

[3]  Peter V. Hobbs,et al.  Fall speeds and masses of solid precipitation particles , 1974 .

[4]  Andrew J. Heymsfield,et al.  The Dimensional Characteristics of Ice Crystal Aggregates from Fractal Geometry , 2010 .

[5]  Z. Haddad,et al.  Constraining CloudSat‐based snowfall profiles using surface observations and C‐band ground radar , 2011 .

[6]  J. Harrington,et al.  A Method for Adaptive Habit Prediction in Bulk Microphysical Models. Part I: Theoretical Development , 2013 .

[7]  D. Mitchell Use of Mass- and Area-Dimensional Power Laws for Determining Precipitation Particle Terminal Velocities , 1996 .

[8]  H. Morrison,et al.  Parameterization of Cloud Microphysics Based on the Prediction of Bulk Ice Particle Properties. Part I: Scheme Description and Idealized Tests , 2015 .

[9]  Witold F. Krajewski,et al.  Wind-Induced Error of Raindrop Size Distribution Measurement Using a Two-Dimensional Video Disdrometer , 2000 .

[10]  I. Zawadzki,et al.  Snow Studies. Part II: Average Relationship between Mass of Snowflakes and Their Terminal Fall Velocity , 2010 .

[11]  M. Löffler-Mang,et al.  An Optical Disdrometer for Measuring Size and Velocity of Hydrometeors , 2000 .

[12]  Valliappa Lakshmanan,et al.  A Statistical Approach to Mitigating Persistent Clutter in Radar Reflectivity Data , 2012, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[13]  V. Chandrasekar,et al.  Classification and Quantification of Snow Based on Spatial Variability of Radar Reflectivity , 2013 .

[14]  P. Kollias,et al.  Observed relations between snowfall microphysics and triple‐frequency radar measurements , 2015 .

[15]  H. Böhm A General Equation for the Terminal Fall Speed of Solid Hydrometeors. , 1989 .

[16]  J. Zikmunda Fall Velocities of Spatial Crystals.and Aggregates , 1972 .

[17]  Stéphane Laroche,et al.  Polarimetric Doppler weather radar: principles and applications , 2002 .

[18]  V. Chandrasekar,et al.  BAECC: a field campaign to elucidate the impact of Biogenic Aerosols on Clouds and Climate a field campaign to elucidate the impact of Biogenic Aerosols , 2018 .

[19]  D. Moisseev,et al.  Use of 2D-video disdrometer to derive mean density–size and Ze–SR relations: Four snow cases from the light precipitation validation experiment , 2015 .

[20]  Farid F. Abraham,et al.  Functional Dependence of Drag Coefficient of a Sphere on Reynolds Number , 1970 .

[21]  J. Marshall,et al.  THE DISTRIBUTION WITH SIZE OF AGGREGATE SNOWFLAKES , 1958 .

[22]  Harri Hohti,et al.  Quality assurance in the FMI Doppler Weather Radar Network , 2010 .

[23]  Kevin W. Manning,et al.  Explicit Forecasts of Winter Precipitation Using an Improved Bulk Microphysics Scheme. Part I: Description and Sensitivity Analysis , 2004 .

[24]  J. Klett,et al.  Microphysics of Clouds and Precipitation , 1978, Nature.

[25]  V. Chandrasekar,et al.  A Dual-Polarization Radar Hydrometeor Classification Algorithm for Winter Precipitation , 2014 .

[26]  Gabor Vali,et al.  Fall Patterns and Fall Velocities of Rimed Ice Crystals , 1972 .

[27]  Dagmar Bednárová,et al.  Total Least Squares Approach to Modeling: A Matlab Toolbox , 2010 .

[28]  David L. Mitchell,et al.  Growth of ice particle mass and projected area during riming , 2016 .

[29]  R. C. Srivastava,et al.  Snow Size Spectra and Radar Reflectivity , 1970 .

[30]  Devis Tuia,et al.  Hydrometeor classification from polarimetric radar measurements: a clustering approach , 2015 .

[31]  Andrew J. Newman,et al.  Presenting the Snowflake Video Imager (SVI) , 2009 .

[32]  Inferring Fall Attitudes of Pristine Dendritic Crystals from Polarimetric Radar Data , 2005 .

[33]  M. Kajikawa Measurement of Falling Velocity of Individual Snow Crystals , 1972 .

[34]  Andrew J. Heymsfield,et al.  A Comparative Study of the Rates of Development of Potential Graupel and Hail Embryos in High Plains Storms. , 1982 .

[35]  Patrick C. Kennedy,et al.  S-Band Dual-Polarization Radar Observations of Winter Storms , 2011 .

[36]  David Atlas,et al.  Scattering and attenuation by non-spherical atmospheric particles , 1953 .

[37]  W. Randeu,et al.  One decade of imaging precipitation measurement by 2D-video-distrometer , 2007 .

[38]  Dochul Yang,et al.  WMO Solid Precipitation Measurement Intercomparison Final Report , 1998 .

[39]  David Hudak,et al.  Estimating snow microphysical properties using collocated multisensor observations , 2014 .

[40]  E. Barthazy,et al.  Fall velocity of snowflakes of different riming degree and crystal types , 2006 .

[41]  C. Magono,et al.  Aerodynamic Studies of Falling Snowflakes , 1965 .

[42]  R. C. Langille,et al.  SOME QUANTITATIVE MEASUREMENTS OF THREE-CENTIMETER RADAR ECHOES FROM FALLING SNOW , 1951 .

[43]  M. P. Langleben The terminal velocity of snowflakes , 1954 .

[44]  T. L’Ecuyer,et al.  Characterization of video disdrometer uncertainties and impacts on estimates of snowfall rate and radar reflectivity , 2013 .

[45]  Paul L. Smith Equivalent Radar Reflectivity Factors for Snow and Ice Particles , 1984 .

[46]  E. Barthazy,et al.  An Optical Array Instrument for Shape and Fall Velocity Measurements of Hydrometeors , 2004 .

[47]  S. Yuter,et al.  Observed influence of riming, temperature, and turbulence on the fallspeed of solid precipitation , 2014 .

[48]  Yasushi Fujiyoshi,et al.  Determination of a Z-R Relationship for Snowfall Using a Radar and High Sensitivity Snow Gauges , 1990 .

[49]  Ulrich Blahak,et al.  Estimation of the Equivalent Radar Reflectivity Factor from Measured Snow Size Spectra. , 2001 .

[50]  A. Glisson,et al.  Electromagnetic mixing formulas and applications , 2000, IEEE Antennas and Propagation Magazine.

[51]  Roland List,et al.  Free-Fall Behavior of Planar Snow Crystals, Conical Graupel and Small Hail , 1971 .

[52]  S. Joseph Munchak,et al.  Detection Thresholds of Falling Snow From Satellite-Borne Active and Passive Sensors , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[53]  T. L’Ecuyer,et al.  Microphysical Constraints on Millimeter-Wavelength Scattering Properties of Snow Particles , 2015 .

[54]  Annakaisa von Lerber,et al.  Ensemble mean density and its connection to other microphysical properties of falling snow as observed in Southern Finland , 2016 .

[55]  Roy Rasmussen,et al.  A Statistical and Physical Description of Hydrometeor Distributions in Colorado Snowstorms Using a Video Disdrometer , 2007 .

[56]  J. Curry,et al.  Fall Velocities of Hydrometeors in the Atmosphere: Refinements to a Continuous Analytical Power Law. , 2005 .

[57]  Andrew J. Heymsfield,et al.  Refinements in the Treatment of Ice Particle Terminal Velocities, Highlighting Aggregates , 2005 .

[58]  John Kochendorfer,et al.  How Well Are We Measuring Snow: The NOAA/FAA/NCAR Winter Precipitation Test Bed , 2012 .

[59]  Andrew J. Heymsfield,et al.  Effective Ice Particle Densities Derived from Aircraft Data , 2004 .

[60]  Timothy J. Garrett,et al.  Orientations and aspect ratios of falling snow , 2015 .

[61]  David Hudak,et al.  A Methodology to Derive Radar Reflectivity–Liquid Equivalent Snow Rate Relations Using C-Band Radar and a 2D Video Disdrometer , 2010 .

[62]  David L. Mitchell,et al.  Mass-Dimensional Relationships for Ice Particles and the Influence of Riming on Snowfall Rates , 1990 .

[63]  Roy Rasmussen,et al.  Snow Nowcasting Using a Real-Time Correlation of Radar Reflectivity with Snow Gauge Accumulation , 2003 .

[64]  Donna V. Kliche,et al.  The Bias in Moment Estimators for Parameters of Drop Size Distribution Functions: Sampling from Exponential Distributions , 2005 .

[65]  Timothy J. Garrett,et al.  Fall speed measurement and high-resolution multi-angle photography of hydrometeors in free fall , 2012 .

[66]  Sanghun Lim,et al.  Dual‐polarization radar signatures in snowstorms: Role of snowflake aggregation , 2015 .

[67]  Jussi Leinonen,et al.  A Climatology of Disdrometer Measurements of Rainfall in Finland over Five Years with Implications for Global Radar Observations , 2012 .

[68]  Gyu Won Lee,et al.  Variability of Drop Size Distributions: Noise and Noise Filtering in Disdrometric Data , 2005 .

[69]  Ken-ichiro Muramoto,et al.  Measuring the density of snow particles and snowfall rate , 1995 .

[70]  Monika Hanesch Fall velocity and shape of snowflakes , 1999 .

[71]  Witold F. Krajewski,et al.  Two-dimensional video disdrometer: A description , 2002 .

[72]  Ukitiro Nakaya,et al.  Simultaneous Observations of the Mass, Falling Velocity and Form of Individual Snow Crystals , 1935 .

[73]  J. Curry,et al.  Terminal Velocities of Droplets and Crystals: Power Laws with Continuous Parameters over the Size Spectrum , 2002 .

[74]  J. S. Marshall,et al.  MEASUREMENT OF SNOW PARAMETERS BY RADAR , 1952 .

[75]  M. Kajikawa Measurement of Falling Velocity of Individual Graupel Particles , 1975 .

[76]  V. Chandrasekar,et al.  Polarimetric Radar Observations in the Ice Region of Precipitating Clouds at C-Band and X-Band Radar Frequencies , 2013 .