Development of silicon microheaters for chemoresistive gas sensors

We report on the design, fabrication, and characterization of a microheater module for chemoresistive, metal-oxide semiconductor gas sensors, consisting of a dielectric stacked membrane, micromachined from bulk silicon and with an embedded polysilicon resistor heater. Fabricated structures exhibit excellent heating efficiency, requiring only 30 mW to achieve a temperature of 500 C. Measured electrothermal characteristics are in good agreement with the outcomes of 3D numerical simulations.