Micro- and nanomechanical properties of diamond film with various surface morphologies

The morphologies of chemical vapour deposited (CVD) diamond films can be changed over a wide range by controlling the process parameters of the deposition. The surface morphologies of the film in turn, govern the micro- and nanomechanical properties of the film. In view of these, diamond films having three different types of morphologies namely coarse ballas, fine ballas and faceted, have been deposited using microwave chemical vapour deposition (MWCVD) technique. The morphology, and nature of bonds of these films are characterised with the help of scanning electron microscopy (SEM) and Raman spectroscopy. Hardness of the films is evaluated using nanoindenter. Force spectroscopy, topographies and lateral force values of these films are estimated by means of atomic force microscopy (AFM). Results indicate that films having fine ballas morphology exhibit the minimum roughness whereas film with faceted morphology has highest relative hardness. The friction force was found to be minimum with the film having fine ballas morphology and the friction force was maximum with film having coarse ballas morphology.

[1]  T. Muto,et al.  Generation of diamond nuclei by electric field in plasma chemical vapor deposition , 1991 .

[2]  S. Noda,et al.  Tribological characteristics of polycrystalline diamond films produced by chemical vapor deposition , 1992 .

[3]  D. Gruen,et al.  Deposition and characterization of nanocrystalline diamond films , 1994 .

[4]  R. Haubner,et al.  Diamond growth by hot-filament chemical vapor deposition: state of the art , 1993 .

[5]  R. Haubner,et al.  Characterization of diamond coatings with transmission electron microscopy , 1994 .

[6]  T. L. Huu,et al.  Diamond films control for tribological applications , 1999 .

[7]  P. Schmid,et al.  Surface micromachined diamond microswitch , 2000 .

[8]  G. Vorlaufer,et al.  Nanotribological study of PECVD DLC and reactively sputtered Ti containing carbon films , 2006 .

[9]  Jai-Young Lee,et al.  Deposition of heteroepitaxial diamond film on (100) silicon in the dense plasma , 1996 .

[10]  P. Schmid,et al.  Diamond electro-mechanical micro devices — technology and performance , 2001 .

[11]  E. Blank,et al.  Microstructure evolution and non-diamond carbon incorporation in CVD diamond thin films grown at low substrate temperatures , 1997 .

[12]  S. Perry,et al.  Fundamental measurements of the friction of clean and oxygen-covered VC(100) with ultrahigh vacuum atomic force microscopy: evidence for electronic contributions to interfacial friction , 1998 .

[13]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[14]  M. Nastasi,et al.  Present progress in the development of low friction coatings , 1996 .

[15]  B. Chalamala,et al.  Current saturation mechanisms in carbon nanotube field emitters , 2000 .

[16]  E. Riedo,et al.  Nanotribology of carbon based thin films : the influence of film structure and surface morphology , 2001 .

[17]  Xin Jiang,et al.  Heteroepitaxial diamond growth on (100) silicon , 1993 .

[18]  J. Angus,et al.  Low-Pressure, Metastable Growth of Diamond and "Diamondlike" Phases , 1988, Science.

[19]  M. Umeno,et al.  Strong adhesion in nanocrystalline diamond films on silicon substrates , 2001 .

[20]  R. Haubner,et al.  Effects of microwave plasma deposition parameters on diamond coating formation on SiAlON substrates , 1992 .

[21]  E. Blank,et al.  Complementary application of electron microscopy and micro-Raman spectroscopy for microstructure, stress, and bonding defect investigation of heteroepitaxial chemical vapor deposited diamond films , 1998 .

[22]  R. Messier,et al.  Current Issues and Problems in the Chemical Vapor Deposition of Diamond , 1990, Science.

[23]  E. Kohn,et al.  Diamond MEMS — a new emerging technology , 1999 .

[24]  G. Fenske,et al.  Tribological properties of nanocrystalline diamond films , 1999 .

[25]  Remo Guidieri Res , 1995, RES: Anthropology and Aesthetics.

[26]  William B. White,et al.  Characterization of diamond films by Raman spectroscopy , 1989 .

[27]  M Cieplak,et al.  Molecular Origins of Friction: The Force on Adsorbed Layers , 1994, Science.

[28]  J. Lüning,et al.  Run-In Behavior of Nanocrystalline Diamond Coatings Studied By in Situ Tribometry , 2008 .

[29]  Richard L. C. Wu,et al.  Environmental effects on friction and wear of diamond and diamondlike carbon coatings , 1992 .

[30]  Rui F. Silva,et al.  Biotribological performance of NCD coated Si3N4–bioglass composites , 2007 .

[31]  R. E. Shroder,et al.  Raman scattering characterization of carbon bonding in diamond and diamondlike thin films , 1988 .

[32]  Persson,et al.  Reply to "Comment on 'Surface resistivity and vibrational damping in adsorbed layers' " , 1991, Physical review. B, Condensed matter.

[33]  R. Haubner,et al.  Deposition of ballas diamond and nano-crystalline diamond , 2002 .

[34]  R. Haubner,et al.  Natural and synthetic polycrystalline diamond, with emphasis on ballas: ‘Ballas’ — Radially grown, polycrystalline diamonds? , 1997 .

[35]  David N. Jamieson,et al.  The Raman spectrum of nanocrystalline diamond , 2000 .

[36]  J. Robertson,et al.  Origin of the 1 1 5 0 − cm − 1 Raman mode in nanocrystalline diamond , 2001 .

[37]  J. Robertson Diamond-like amorphous carbon , 2002 .

[38]  John I. B. Wilson,et al.  Diamond and hard carbon films for microelectromechanical systems (MEMS)—a nanotribological study , 2002 .

[39]  Rama Vuppuladhadium,et al.  Physical and tribological properties of rapid thermal annealed diamond-like carbon films , 1992 .

[40]  S. Matsumoto,et al.  Effect of the excitation wavelength on Raman scattering of microcrystalline diamond prepared in a low pressure inductively coupled plasma , 2000 .

[41]  G. Pharr,et al.  An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments , 1992 .

[42]  Jai-Young Lee,et al.  The effects of a negative bias on the nucleation of oriented diamond on Si , 1998 .

[43]  J. Patscheider,et al.  Nanocomposite TiC/a–C:H hard coatings deposited by reactive PVD , 2000 .

[44]  C. Donnet Advanced solid lubricant coatings for high vacuum environments , 1996 .

[45]  B. Bhushan Principles and Applications of Tribology , 1999 .

[46]  J. Krim Atomic-Scale Origins of Friction† , 1996 .

[47]  E. Makino,et al.  Micromachining of diamond film for MEMS applications , 2000, Journal of Microelectromechanical Systems.

[48]  J. Asmussen,et al.  Precision micromachining of CVD diamond films , 2000 .

[49]  W. Ahmed,et al.  Friction force microscopy study of diamond films modified by a glow discharge treatment , 2000 .

[50]  Rui F. Silva,et al.  Friction and wear performance of HFCVD nanocrystalline diamond coated silicon nitride ceramics , 2006 .

[51]  Andrew G. Glen,et al.  APPL , 2001 .