Process Analytical Chemistry: Applications of Ultraviolet/Visible Spectrometry in Environmental Analysis: An Overview

Abstract Process analyzers based on the selective absorption of the ultraviolet (UV) and/or visible (VIS) radiation provide an on-line monitoring highly reliable of the composition and the industrial process control. This review provides information about the technological advances in this area and its industrial applications, especially environmental applications.

[1]  S Winkler,et al.  Quantification of pollution loads from CSOs into surface water bodies by means of online techniques. , 2004, Water science and technology : a journal of the International Association on Water Pollution Research.

[2]  M. Pons,et al.  Wastewater fingerprinting by UV-visible and synchronous fluorescence spectroscopy. , 2006, Water science and technology : a journal of the International Association on Water Pollution Research.

[3]  Günter Langergraber,et al.  On-line and in-situ UV/vis spectroscopy for multi-parameter a brief review , 2006 .

[4]  Miroslav Mrkva,et al.  Automatic u.v.-control system for relative evaluation of organic water pollution , 1975 .

[5]  Miroslav Mrkva,et al.  Evaluation of correlations between absorbance at 254 nm and COD of river waters , 1983 .

[6]  W Rauch,et al.  Assessment of CSO loads--based on UVIVIS-spectroscopy by means of different regression methods. , 2006, Water science and technology : a journal of the International Association on Water Pollution Research.

[7]  Robert B. Dean,et al.  The use of ultra-violet absorbance for monitoring the total organic carbon content of water and wastewater , 1972 .

[8]  F Ravegnani,et al.  Differential optical absorption spectrometer for measurement of tropospheric pollutants. , 1995, Applied optics.

[9]  K. Müller Eine neue Methode zur Bestimmung des Quecksilbergehaltes der Luft , 1930 .

[10]  B. Coulomb,et al.  Rapid estimation of TOC in a marine urban sewage area by UV spectral deconvolution , 2006 .

[11]  Multipass optical absorption spectroscopy: a fast-scanning laser spectrometer for the in situ determination of atmospheric trace-gas components, in particular OH. , 1996, Applied optics.

[12]  J.-L. Bertrand-Krajewski,et al.  Mesure de la concentration en polluants dans les eaux usées par spectrométrie UV-vis , 2006 .

[13]  G Langergraber,et al.  Time-resolved delta spectrometry: a method to define alarm parameters from spectral data. , 2004, Water science and technology : a journal of the International Association on Water Pollution Research.

[14]  A. Vega,et al.  Evaluation of rapid methods for in-situ characterization of organic contaminant load and biodegradation rates in winery wastewater. , 2007, Water science and technology : a journal of the International Association on Water Pollution Research.

[15]  C. Fitzpatrick,et al.  Hazardous exhaust gas monitoring using a deep UV based differential optical absorption spectroscopy (DOAS) system , 2007 .

[16]  N. Fleischmann,et al.  On-line monitoring for control of a pilot-scale sequencing batch reactor using a submersible UV/VIS spectrometer. , 2004, Water science and technology : a journal of the International Association on Water Pollution Research.

[17]  N. Fleischmann,et al.  Spectral in-situ analysis of NO2, NO3, COD, DOC and TSS in the effluent of a WWTP. , 2004, Water science and technology : a journal of the International Association on Water Pollution Research.

[18]  Young Joon Kim,et al.  Simultaneous measurements of atmospheric trace gases and atmospheric visibility by DOAS system , 2003, Asia-Pacific Remote Sensing.

[19]  G Langergraber,et al.  Monitoring of a paper mill wastewater treatment plant using UV/VIS spectroscopy. , 2004, Water science and technology : a journal of the International Association on Water Pollution Research.

[20]  J. De Baerdemaeker,et al.  Optimisation of soil VIS–NIR sensor-based variable rate application system of soil phosphorus , 2007 .

[21]  Thomas T. Woodson,et al.  A New Mercury Vapor Detector , 1939 .

[22]  O. Thomas,et al.  Basic handling of UV spectra for urban water quality monitoring , 2002 .

[23]  R. Kessler,et al.  Study of dye decolorization in an immobilized laccase enzyme‐reactor using online spectroscopy , 2004, Biotechnology and bioengineering.

[24]  S Winkler,et al.  Influence of changes of the wastewater composition on the applicability of UV-absorption measurements at combined sewer overflows. , 2003, Water science and technology : a journal of the International Association on Water Pollution Research.

[25]  Hang-Sik Shin,et al.  Feasibility of On-line Measurement of Sewage Components Using the UV Absorbance and the Neural Network , 2007, Environmental monitoring and assessment.

[26]  N. Matsché,et al.  UV absorption as control-parameter for biological treatment plants , 1996 .

[27]  Daniele Bortoli,et al.  Tropospheric and stratospheric NO2 amount deduced by slant column measurements at Mt. Cimone station , 2002 .

[28]  P. Avino,et al.  Remote sensing measurements for evaluation of air quality in an urban area. , 2004, Annali di chimica.

[29]  H. Visser,et al.  TROPOMI and TROPI: UV/VIS/NIR/SWIR instruments , 2006, SPIE Optics + Photonics.

[30]  F. Comes,et al.  Local Monitoring of Absolute NO2 Concentrations in Ambient Air by Multipass Absorption Spectroscopy , 1993 .

[31]  Wouter Saeys,et al.  Potential for Onsite and Online Analysis of Pig Manure using Visible and Near Infrared Reflectance Spectroscopy , 2005 .

[32]  M. Grutzeck,et al.  The Adsorption of SO2 by Zeolites Synthesized from Fly Ash , 1999 .

[33]  O Thomas,et al.  In situ UV monitoring of wastewater: a response to sample aging. , 2004, Water science and technology : a journal of the International Association on Water Pollution Research.

[34]  Heikki Saari,et al.  The ozone monitoring instrument , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[35]  S. Brookman,et al.  Estimation of biochemical oxygen demand in slurry and effluents using ultra-violet spectrophotometry , 1997 .

[36]  Guenter Langergraber,et al.  Real-time detection of possible harmful events using UV/vis spectrometry , 2006 .

[37]  L Rieger,et al.  Uncertainties of spectral in situ measurements in wastewater using different calibration approaches. , 2006, Water science and technology : a journal of the International Association on Water Pollution Research.

[38]  Robert S. Saltzman,et al.  Ultraviolet/Visible Spectroscopy in Process Analyses , 2011 .

[39]  E. Baurès,et al.  UV spectrophotometry as a non-parametric measurement of water and wastewater quality variability , 2005 .

[40]  C. Tropea,et al.  Light Scattering from Small Particles , 2003 .

[41]  O. Thomas,et al.  On line spectrophotometric method for the monitoring of colour removal processes , 2002 .

[42]  R. Saltzman A monitoring system for low levels of hydrogen sulfide in alkanolamine streams , 1986 .

[43]  Laurence S. Rothman,et al.  The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation) , 1998, Defense, Security, and Sensing.

[44]  Karl J. Wallace,et al.  A colorimetric response to hydrogen sulfide , 2007 .

[45]  Mike Hoare,et al.  Development of a high resolution UV spectrophotometer for at-line monitoring of bioprocesses , 2002 .

[46]  Levente L. Diosady,et al.  In-line colour monitoring during food extrusion: Sensitivity and correlation with product colour , 2007 .

[47]  S. Cassini,et al.  Disinfection of sludge using lime stabilisation and pasteurisation in a small wastewater treatment plant. , 2004, Water science and technology : a journal of the International Association on Water Pollution Research.

[48]  Elfed Lewis,et al.  On-board monitoring of hazardous exhaust emissions in passenger cars (category M1) , 2006, SPIE Optics East.

[49]  N. Fleischmann,et al.  A multivariate calibration procedure for UV/VIS spectrometric quantification of organic matter and nitrate in wastewater. , 2003, Water science and technology : a journal of the International Association on Water Pollution Research.

[50]  Johannes Orphal,et al.  Measurements of molecular absorption spectra with the SCIAMACHY pre-flight model: instrument characterization and reference data for atmospheric remote-sensing in the 230–2380 nm region , 2003 .

[51]  H. Tai,et al.  Fiber-optic evanescent-wave methane-gas sensor using optical absorption for the 3.392-microm line of a He-Ne laser. , 1987, Optics letters.