The Effects of a Hydrostatic Pocket Aspect Ratio, Supply Orifice Position, and Attack Angle on Steady-State Flow Patterns, Pressure, and Shear Characteristics

The flow in a hydrostatic pocket is described by a mathematical model that uses the Navier-Stokes equations written in terms of the primary variables, u, v, and p. Using the conservative formulation, a finite difference method is applied through a staggered grid. The power law scheme is applied in the treatment of the convective terms for this highly recirculating flow. The discussion pertaining to the convergence of the numerical scheme and the computational error, shows that the strict convergence criteria applied to both velocities and pressure were successfully statisfied. The numerical model is applied in a parametric mode to the study of the velocities, the pressure patterns, and shear forces that characterize the flow in a square (α = 1), deep (α>1), and shallow (α≪1) hydrostatic pocket. The effects of the variation of the location and angle of the hydrostatic jet are also investigated.