Deep learning sequence-based ab initio prediction of variant effects on expression and disease risk

[1]  Nicola J. Rinaldi,et al.  Genetic effects on gene expression across human tissues , 2017, Nature.

[2]  Michael Wainberg,et al.  Predicting gene expression in massively parallel reporter assays: A comparative study , 2017, Human mutation.

[3]  Helen E. Parkinson,et al.  The new NHGRI-EBI Catalog of published genome-wide association studies (GWAS Catalog) , 2016, Nucleic Acids Res..

[4]  Gao Wang,et al.  The impact of rare variation on gene expression across tissues , 2016, Nature.

[5]  Eleazar Eskin,et al.  Local genetic effects on gene expression across 44 human tissues , 2016, bioRxiv.

[6]  A. Price,et al.  Dissecting the genetics of complex traits using summary association statistics , 2016, Nature Reviews Genetics.

[7]  Pardis C Sabeti,et al.  Direct Identification of Hundreds of Expression-Modulating Variants using a Multiplexed Reporter Assay , 2016, Cell.

[8]  Eric S. Lander,et al.  Direct Identification of Hundreds of Expression-Modulating Variants using a Multiplexed Reporter Assay , 2016, Cell.

[9]  Tianqi Chen,et al.  XGBoost: A Scalable Tree Boosting System , 2016, KDD.

[10]  J. Rioux,et al.  Genetic association analyses implicate aberrant regulation of innate and adaptive immunity genes in the pathogenesis of systemic lupus erythematosus , 2015, Nature Genetics.

[11]  Gabor T. Marth,et al.  A global reference for human genetic variation , 2015, Nature.

[12]  O. Troyanskaya,et al.  Predicting effects of noncoding variants with deep learning–based sequence model , 2015, Nature Methods.

[13]  Judy H. Cho,et al.  Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations , 2015, Nature Genetics.

[14]  Kaanan P. Shah,et al.  A gene-based association method for mapping traits using reference transcriptome data , 2015, Nature Genetics.

[15]  G. Cao,et al.  Genetic variants in five novel loci including CFB and CD40 predispose to chronic hepatitis B , 2015, Hepatology.

[16]  G. von Heijne,et al.  Tissue-based map of the human proteome , 2015, Science.

[17]  A. Singleton,et al.  Genetic variability in the regulation of gene expression in ten regions of the human brain , 2014, Nature Neuroscience.

[18]  Cesare Furlanello,et al.  A promoter-level mammalian expression atlas , 2015 .

[19]  J. Shendure,et al.  A general framework for estimating the relative pathogenicity of human genetic variants , 2014, Nature Genetics.

[20]  A. Dunning,et al.  Beyond GWASs: illuminating the dark road from association to function. , 2013, American journal of human genetics.

[21]  M. Peters,et al.  Systematic identification of trans eQTLs as putative drivers of known disease associations , 2013, Nature Genetics.

[22]  Miguel Melo,et al.  Frequency of TERT promoter mutations in human cancers , 2013, Nature Communications.

[23]  J. Harrow,et al.  Transcriptome analysis of human tissues and cell lines reveals one dominant transcript per gene , 2013, Genome Biology.

[24]  Sebastian M. Armasu,et al.  A Genome‐Wide Association Study for Venous Thromboembolism: The Extended Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium , 2013, Genetic epidemiology.

[25]  Ellen T. Gelfand,et al.  The Genotype-Tissue Expression (GTEx) project , 2013, Nature Genetics.

[26]  Lynda Chin,et al.  Highly Recurrent TERT Promoter Mutations in Human Melanoma , 2013, Science.

[27]  Akira Meguro,et al.  Genome-wide association analysis identifies new susceptibility loci for Behçet's disease and epistasis between HLA-B*51 and ERAP1 , 2013, Nature Genetics.

[28]  Natalie de Souza Genomics: The ENCODE project , 2012, Nature Methods.

[29]  David C. Wilson,et al.  Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease , 2012, Nature.

[30]  Fuu-Jen Tsai,et al.  Two new susceptibility loci for Kawasaki disease identified through genome-wide association analysis , 2012, Nature Genetics.

[31]  F. Vannberg,et al.  GENETICS OF GENE EXPRESSION IN PRIMARY IMMUNE CELLS IDENTIFIES CELL-SPECIFIC MASTER REGULATORS AND ROLES OF HLA ALLELES , 2012, Nature Genetics.

[32]  F. Cambien,et al.  Genetics of Venous Thrombosis: Insights from a New Genome Wide Association Study , 2011, PloS one.

[33]  L. Liang,et al.  A genome-wide association study identifies two new risk loci for Graves' disease , 2011, Nature Genetics.

[34]  Simon C. Potter,et al.  Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis , 2011, Nature.

[35]  John A. Todd,et al.  Genome-Wide Association Analysis of Autoantibody Positivity in Type 1 Diabetes Cases , 2011, PLoS genetics.

[36]  Tariq Ahmad,et al.  Genome-wide meta-analysis increases to 71 the number of confirmed Crohn's disease susceptibility loci , 2010, Nature Genetics.

[37]  T. Mikkelsen,et al.  The NIH Roadmap Epigenomics Mapping Consortium , 2010, Nature Biotechnology.

[38]  Joseph K. Pickrell,et al.  Understanding mechanisms underlying human gene expression variation with RNA sequencing , 2010, Nature.

[39]  Enrique Blanco,et al.  Hnf1α (MODY3) Controls Tissue-Specific Transcriptional Programs and Exerts Opposed Effects on Cell Growth in Pancreatic Islets and Liver , 2009, Molecular and Cellular Biology.

[40]  P. Stenson,et al.  The Human Gene Mutation Database: 2008 update , 2009, Genome Medicine.

[41]  David Altshuler,et al.  Genetic variants near TNFAIP3 on 6q23 are associated with systemic lupus erythematosus , 2008, Nature Genetics.

[42]  Judy H. Cho,et al.  Genome-wide association defines more than 30 distinct susceptibility loci for Crohn's disease , 2008, Nature Genetics.

[43]  E. Segal,et al.  Predicting expression patterns from regulatory sequence in Drosophila segmentation , 2008, Nature.

[44]  Lei Guo,et al.  Predicting Gene Expression from Sequence: A Reexamination , 2007, PLoS Comput. Biol..

[45]  B. Efron Size, power and false discovery rates , 2007, 0710.2245.

[46]  Alastair Forbes,et al.  Sequence variants in the autophagy gene IRGM and multiple other replicating loci contribute to Crohn's disease susceptibility , 2007, Nature Genetics.

[47]  Simon C. Potter,et al.  Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls , 2007, Nature.

[48]  Zhiping Weng,et al.  Analysis of overrepresented motifs in human core promoters reveals dual regulatory roles of YY1. , 2007, Genome research.

[49]  B. Peter BOOSTING FOR HIGH-DIMENSIONAL LINEAR MODELS , 2006 .

[50]  P. Bühlmann Boosting for high-dimensional linear models , 2006 .

[51]  C. Cunningham-Rundles,et al.  Bruton's Tyrosine Kinase Is Essential for Human B Cell Tolerance , 2004, The Journal of experimental medicine.

[52]  Michael A. Beer,et al.  Predicting Gene Expression from Sequence , 2004, Cell.

[53]  A. Fischer,et al.  Munc13-4 Is Essential for Cytolytic Granules Fusion and Is Mutated in a Form of Familial Hemophagocytic Lymphohistiocytosis (FHL3) , 2003, Cell.

[54]  K. Amano,et al.  Two double heterozygous mutations in the F7 gene show different manifestations , 2002, British journal of haematology.

[55]  H. Bussemaker,et al.  Regulatory element detection using correlation with expression , 2001, Nature Genetics.

[56]  T. Hansen,et al.  Mutations in the hepatocyte nuclear factor-1α gene in maturity-onset diabetes of the young (MODY3) , 1996, Nature.

[57]  古田 浩人 Mutations in the hepatocyte nuclear factor-4α gene in maturity-onset diabetes of the young (MODY1) , 1999 .

[58]  M. Stoffel,et al.  Mutations in the hepatocyte nuclear factor-4α gene in maturity-onset diabetes of the young (MODY1) , 1996, Nature.