Heat absorption analysis by falling particles at high temperatures for concentrating solar power systems

[1]  Y. K. Rao Stoichiometry and Thermodynamics of Metallurgical Processes , 1985 .

[2]  Craig Turchi,et al.  Parabolic Trough Reference Plant for Cost Modeling with the Solar Advisor Model (SAM) , 2010 .

[3]  L. Chow,et al.  Enhancing heat capacity of colloidal suspension using nanoscale encapsulated phase-change materials for heat transfer. , 2010, ACS applied materials & interfaces.

[4]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[5]  W. Kaplan,et al.  Ordered Liquid Aluminum at the Interface with Sapphire , 2005, Science.

[6]  Nathan P. Siegel,et al.  Development and Evaluation of a Prototype Solid Particle Receiver: On-Sun Testing and Model Validation , 2010 .

[7]  G. Flamant,et al.  Theoretical study of combined conductive, convective and radiative heat transfer between plates and packed beds , 1994 .

[8]  M. Kenisarin High-temperature phase change materials for thermal energy storage , 2010 .

[9]  Debjyoti Banerjee,et al.  Flow Loop Experiments Using Polyalphaolefin Nanofluids , 2009 .

[10]  D. Kunii,et al.  Heat transfer characteristics of porous rocks , 1960 .

[11]  M. Hawlader,et al.  Encapsulated phase change materials for thermal energy storage: Experiments and simulation , 2002 .

[12]  N. Wakao,et al.  Measurements of particle-to-gas heat transfer coefficients from one-shot thermal responses in packed beds , 1981 .

[13]  Gary E Rochau,et al.  Operation and analysis of a supercritical CO2 Brayton cycle. , 2010 .

[14]  Heat Transfer Fundamentals , 2015 .

[15]  Rajesh N. Dave,et al.  Fine particle coating by a novel rotating fluidized bed coater , 2004 .

[16]  Nate Blair,et al.  Modeling Photovoltaic and Concentrating Solar Power Trough Performance, Cost, and Financing with the Solar Advisor Model: Preprint , 2008 .

[17]  Jon T. Van Lew,et al.  Analysis of Heat Storage and Delivery of a Thermocline Tank Having Solid Filler Material , 2011 .

[18]  Suresh V. Garimella,et al.  Thermal analysis of solar thermal energy storage in a molten-salt thermocline , 2010 .

[19]  Zi-kui Liu,et al.  Thermodynamic assessment of the Al-Fe-Si system , 1999 .

[20]  若尾 法昭,et al.  Heat and mass transfer in packed beds , 1982 .

[21]  Luisa F. Cabeza,et al.  State of the art on high temperature thermal energy storage for power generation. Part 1—Concepts, materials and modellization , 2010 .

[22]  J. Pacheco,et al.  DEVELOPMENT OF A MOLTEN-SALT THERMOCLINE THERMAL STORAGE SYSTEM FOR PARABOLIC TROUGH PLANTS , 2001 .

[23]  A. Leitner,et al.  Brighter Than a Hundred Suns: Solar Power for the Southwest; Period of Performance: November 20, 2001 to October 31, 2002 , 2003 .

[24]  Ulf Herrmann,et al.  Engineering aspects of a molten salt heat transfer fluid in a trough solar field , 2004 .

[25]  A. Bronson,et al.  Reactive Processing of a ZrB2/ZrC/Zr–Si Ceramic Composite with a Controlled Oxygen Potential , 2013 .

[26]  D. Kearney,et al.  Survey of Thermal Energy Storage for Parabolic Trough Power Plants , 2002 .

[27]  G. Flamant,et al.  Towards a generalized model for vertical walls to gas—solid fluidized beds heat transfer—II. Radiative transfer and temperature effects , 1993 .

[28]  Eckhard Lüpfert,et al.  Advances in Parabolic Trough Solar Power Technology , 2002 .

[29]  Gregory J. Kolb,et al.  Current and Future Costs for Parabolic Trough and Power Tower Systems in the US Market: Preprint , 2010 .

[30]  Cole Boulevard,et al.  Executive Summary: Assessment of Parabolic Trough and Power Tower Solar Technology Cost and Performance Forecasts , 2003 .

[31]  Ulf Herrmann,et al.  Two-tank molten salt storage for parabolic trough solar power plants , 2004 .