Optical and Dielectric Properties of Chalcogenide Glasses at Terahertz Frequencies

Terahertz time-domain spectroscopy has been used to study the optical and dielectric properties of three chalcogenide glasses: Ge30As8Ga2Se60, Ge35Ga5Se60, and Ge10As20S70. The absorption coefficients α(ν), complex refractive index n(ν), and complex dielectric constants e(ν) were measured in a frequency range from 0.3 THz to 1.5 THz. The measured real refractive indices were fitted using a Sellmeier equation. The results show that the Sellmeier equation fits well with the data throughout the frequency range and imply that the phonon modes of glasses vary with the glass compositions. The theory of farinfrared absorption in amorphous materials is used to analyze the results and to understand the differences in THz absorption among the sample glasses.

[1]  Daniel R. Grischkowsky,et al.  Characterization of an optoelectronic terahertz beam system , 1990 .

[2]  Richard Baraniuk,et al.  Material parameter estimation with terahertz time-domain spectroscopy. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[3]  B. Fischer,et al.  Dynamic range in terahertz time-domain transmission and reflection spectroscopy. , 2005, Optics letters.

[4]  D. Grischkowsky,et al.  MEASUREMENTS OF THE THZ ABSORPTION AND DISPERSION OF ZNTE AND THEIR RELEVANCE TO THE ELECTRO-OPTIC DETECTION OF THZ RADIATION , 1999 .

[5]  R. E. Miles,et al.  Terahertz time-domain spectroscopy: A new tool for the study of glasses in the far infrared , 2005 .

[6]  Jong Heo,et al.  Modification of the local phonon modes and electron–phonon coupling strengths in Dy3+-doped sulfide glasses for efficient 1.3 μm amplification , 2000 .

[7]  Seiji Kojima,et al.  Terahertz time-domain spectroscopy of low-energy excitations in glasses , 2005 .

[8]  Kyong Hon Kim,et al.  Pr3+‐ and Pr3+/Er3+‐Doped Selenide Glasses for Potential 1.6 μm Optical Amplifier Materials , 2001 .

[9]  Takashi Yamagishi,et al.  Recent advances and trends in chalcogenide glass fiber technology: a review , 1992 .

[10]  Abdolnasser Zakery,et al.  Optical properties and applications of chalcogenide glasses: a review , 2003 .

[11]  Toshihiro Arai,et al.  Far-infrared absorption spectra and the spatial fluctuation of charges on amorphous AsS and AsSe systems☆ , 1986 .

[12]  Jasbinder S. Sanghera,et al.  Active and passive chalcogenide glass optical fibers for IR applications: a review , 1999 .

[13]  P. C. Taylor,et al.  Disorder-induced far infrared absorption in amorphous materials , 1974 .

[14]  Robert E. Miles,et al.  Terahertz frequency detection and identification of materials and objects , 2007 .

[15]  Daniel R. Grischkowsky,et al.  Nature of Conduction in Doped Silicon , 1997 .

[16]  Joon Tae Ahn,et al.  Selenide Glass Optical Fiber Doped with Pr3+ for U‐Band Optical Amplifier , 2005 .

[17]  E. Schlömann,et al.  Dielectric Losses in Ionic Crystals with Disordered Charge Distributions , 1964 .

[18]  Isao Tomita,et al.  Quantitative measurements of amino acids by terahertz time-domain transmission spectroscopy. , 2006, Analytical chemistry.

[19]  Seong-Ook Park,et al.  A DIELECTRIC PROPERTY ANALYSIS OF FERROELECTRIC THIN FILM USING TERAHERTZ TIME-DOMAIN SPECTROSCOPY , 2007 .

[20]  A. K. Mukherjee,et al.  Electrical characterization of conducting polypyrrole by THz time-domain spectroscopy , 2000 .

[21]  Robert E. Miles,et al.  Terahertz Beam Interactions with Amorphous Materials , 2007 .

[22]  Joo-Hiuk Son,et al.  Terahertz optical and electrical properties of hydrogen-functionalized carbon nanotubes , 2007 .