On robust twin support vector regression in primal using squared pinball loss

[1]  Young-Chan Lee,et al.  Bankruptcy prediction using support vector machine with optimal choice of kernel function parameters , 2005, Expert Syst. Appl..

[2]  Xinjun Peng,et al.  TSVR: An efficient Twin Support Vector Machine for regression , 2010, Neural Networks.

[3]  Yuan-Hai Shao,et al.  Least squares recursive projection twin support vector machine for classification , 2012, Pattern Recognit..

[4]  Johan A. K. Suykens,et al.  Asymmetric v-tube support vector regression , 2014, Comput. Stat. Data Anal..

[5]  Johan A. K. Suykens,et al.  Support Vector Machine Classifier With Pinball Loss , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Nello Cristianini,et al.  An Introduction to Support Vector Machines and Other Kernel-based Learning Methods , 2000 .

[7]  Qian Wang,et al.  Maximum margin of twin spheres machine with pinball loss for imbalanced data classification , 2017, Applied Intelligence.

[8]  Reshma Khemchandani,et al.  Twin Support Vector Machines for Pattern Classification , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  Janez Demsar,et al.  Statistical Comparisons of Classifiers over Multiple Data Sets , 2006, J. Mach. Learn. Res..

[10]  Olvi L. Mangasarian,et al.  Multisurface proximal support vector machine classification via generalized eigenvalues , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Catherine Blake,et al.  UCI Repository of machine learning databases , 1998 .

[12]  Xin Shen,et al.  Support vector machine classifier with truncated pinball loss , 2017, Pattern Recognit..

[13]  A. Gretton,et al.  Support vector regression for black-box system identification , 2001, Proceedings of the 11th IEEE Signal Processing Workshop on Statistical Signal Processing (Cat. No.01TH8563).

[14]  Federico Girosi,et al.  Training support vector machines: an application to face detection , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[15]  Xianli Pan,et al.  A Novel Twin Support-Vector Machine With Pinball Loss , 2017, IEEE Transactions on Neural Networks and Learning Systems.

[16]  Jason Weston,et al.  Gene Selection for Cancer Classification using Support Vector Machines , 2002, Machine Learning.

[17]  Madan Gopal,et al.  Least squares twin support vector machines for pattern classification , 2009, Expert Syst. Appl..

[18]  Lennart Ljung,et al.  Nonlinear black-box modeling in system identification: a unified overview , 1995, Autom..

[19]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.