Stochastic model updating : Part 1 — theory and simulated example

The usual model updating method may be considered to be deterministic since it uses measurements from a single test system to correct a nominal finite element model. There may however be variability in seemingly identical test structures and uncertainties in the finite element model. Variability in test structures may arise from many sources including geometric tolerances and the manufacturing process, and modelling uncertainties may result from the use of nominal material properties, ill-defined joint stiffnesses and rigid boundary conditions. In this paper, the theory of stochastic model updating using a Monte-Carlo inverse procedure with multiple sets of experimental results is explained and then applied to the case of a simulated three degree-of-freedom system, which is used to fix ideas and also to illustrate some of the practical limitations of the method. In the companion paper, stochastic model updating is applied to a benchmark structure using a contact finite element model that includes common uncertainties in the modelling of the spot welds. r 2005 Elsevier Ltd. All rights reserved.

[1]  G. Schuëller A state-of-the-art report on computational stochastic mechanics , 1997 .

[2]  Michael I. Friswell,et al.  The adjustment of structural parameters using a minimum variance estimator , 1989 .

[3]  A. H,et al.  REGULARISATION METHODS FOR FINITE ELEMENT MODEL UPDATING , 1998 .

[4]  John E. Mottershead,et al.  Geometric Parameters for Finite Element Model Updating of Joints and Constraints , 1996 .

[5]  J. Beck,et al.  Updating Models and Their Uncertainties. I: Bayesian Statistical Framework , 1998 .

[6]  A. C. Rencher Methods of multivariate analysis , 1995 .

[7]  François M. Hemez,et al.  A BRIEF TUTORIAL ON VERIFICATION AND VALIDATION , 2003 .

[8]  Dominique Langlais,et al.  Uncertainty propagation in modal analysis , 2003 .

[9]  A. Tarantola,et al.  Generalized Nonlinear Inverse Problems Solved Using the Least Squares Criterion (Paper 1R1855) , 1982 .

[10]  Hamid Ahmadian,et al.  Parameter Selection Strategies in Finite Element Model Updating , 1997 .

[11]  John E. Mottershead,et al.  Results Obtained by Minimising Natural-Frequency Errors and Using Physical Reasoning , 2003 .

[12]  J.E. Mottershead,et al.  Stochastic model updating: Part 2—application to a set of physical structures , 2006 .

[13]  Jon D. Collins,et al.  Statistical Identification of Structures , 1973 .

[14]  John E. Mottershead,et al.  Model Updating In Structural Dynamics: A Survey , 1993 .

[15]  M. Friswell,et al.  Uncertainty identification by the maximum likelihood method , 2005 .

[16]  Hermann G. Matthies,et al.  Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations , 2005 .

[17]  G. Backus,et al.  Uniqueness in the inversion of inaccurate gross Earth data , 1970, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[18]  I. Babuska,et al.  Solution of stochastic partial differential equations using Galerkin finite element techniques , 2001 .

[19]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[20]  John E. Mottershead,et al.  Finite Element Model Updating in Structural Dynamics , 1995 .

[21]  John E. Mottershead,et al.  SELECTION AND UPDATING OF PARAMETERS FOR AN ALUMINIUM SPACE-FRAME MODEL , 2000 .

[22]  Albert Tarantola,et al.  Probabilistic Approach to Inverse Problems , 2002 .