An anti-diffusive numerical scheme for the simulation of interfaces between compressible fluids by means of a five-equation model

We propose a discretization method of a five-equation model with isobaric closure for the simulation of interfaces between compressible fluids. This numerical solver is a Lagrange-Remap scheme that aims at controlling the numerical diffusion of the interface between both fluids. This method does not involve any interface reconstruction procedure. The solver is equipped with built-in stability and consistency properties and is conservative with respect to mass, momentum, total energy and partial masses. This numerical scheme works with a very broad range of equations of state, including tabulated laws. Properties that ensure a good treatment of the Riemann invariants across the interface are proven. As a consequence, the numerical method does not create spurious pressure oscillations at the interface. We show one-dimensional and two-dimensional classic numerical tests. The results are compared with the approximate solutions obtained with the classic upwind Lagrange-Remap approach, and with experimental and previously published results of a reference test case.

[1]  P. Sweby High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws , 1984 .

[2]  J. Sethian Level set methods : evolving interfaces in geometry, fluid mechanics, computer vision, and materials science , 1996 .

[3]  S. Osher,et al.  A Non-oscillatory Eulerian Approach to Interfaces in Multimaterial Flows (the Ghost Fluid Method) , 1999 .

[4]  S. SIAMJ.,et al.  A SIMPLE METHOD FOR COMPRESSIBLE MULTIFLUID FLOWS , 1999 .

[5]  D. Nguyen A Fully Conservative Ghost Fluid Method & Stiff Detonation Waves , 2002 .

[6]  Hervé Guillard,et al.  A five equation reduced model for compressible two phase flow problems , 2005 .

[7]  Keh-Ming Shyue,et al.  Regular Article: A Fluid-Mixture Type Algorithm for Compressible Multicomponent Flow with van der Waals Equation of State , 1999 .

[8]  Hiroshi Terashima,et al.  A front-tracking/ghost-fluid method for fluid interfaces in compressible flows , 2009, J. Comput. Phys..

[9]  Keh-Ming Shyue,et al.  An Efficient Shock-Capturing Algorithm for Compressible Multicomponent Problems , 1998 .

[10]  Oliver A. McBryan,et al.  Front Tracking for Gas Dynamics , 1984 .

[11]  Sheryl M. Gracewski,et al.  The behaviour of a gas cavity impacted by a weak or strong shock wave , 1996, Journal of Fluid Mechanics.

[12]  Frédéric Lagoutière,et al.  Modelisation mathematique et resolution numerique de problemes de fluides compressibles a plusieurs constituants , 2000 .

[13]  J. Strain Fast Tree-Based Redistancing for Level Set Computations , 1999 .

[14]  R. I. Issa,et al.  A Method for Capturing Sharp Fluid Interfaces on Arbitrary Meshes , 1999 .

[15]  R. Abgrall,et al.  A Multiphase Godunov Method for Compressible Multifluid and Multiphase Flows , 1999 .

[16]  S. Osher,et al.  A level set approach for computing solutions to incompressible two-phase flow , 1994 .

[17]  B. Després,et al.  Un schéma non linéaire anti-dissipatif pour l'équation d'advection linéaire , 1999 .

[18]  G. Tryggvason,et al.  A front-tracking method for viscous, incompressible, multi-fluid flows , 1992 .

[19]  G. Allaire,et al.  TEST-CASE NO 19: SHOCK-BUBBLE INTERACTION (PN) , 2004 .

[20]  D. Juric,et al.  A Front-Tracking Method for Dendritic Solidification , 1996 .

[21]  R. Abgrall How to Prevent Pressure Oscillations in Multicomponent Flow Calculations , 1996 .

[22]  Smadar Karni,et al.  Multicomponent Flow Calculations by a Consistent Primitive Algorithm , 1994 .

[23]  Richard Saurel,et al.  A compressible flow model with capillary effects , 2005 .

[24]  Oliver A. McBryan,et al.  A computational model for interfaces , 1985 .

[25]  Smadar Karni,et al.  Hybrid Multifluid Algorithms , 1996, SIAM J. Sci. Comput..

[26]  C. W. Hirt,et al.  Volume of fluid (VOF) method for the dynamics of free boundaries , 1981 .

[27]  B. Després,et al.  Inégalité entropique pour un solveur conservatif du système de la dynamique des gaz en coordonnées de Lagrange , 1997 .

[28]  Alex M. Andrew,et al.  Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science (2nd edition) , 2000 .

[29]  Grégoire Allaire,et al.  A five-equation model for the simulation of interfaces between compressible fluids , 2002 .

[30]  Keh-Ming Shyue,et al.  A wave-propagation based volume tracking method for compressible multicomponent flow in two space dimensions , 2006, J. Comput. Phys..

[31]  Ralph Menikoff,et al.  Anomalous reflection of a shock wave at a fluid interface , 1990, Journal of Fluid Mechanics.

[32]  S. Osher,et al.  A PDE-Based Fast Local Level Set Method 1 , 1998 .

[33]  Grégoire Allaire,et al.  A five-equation model for the numerical simulation of interfaces in two-phase flows , 2000 .

[34]  Theo G. Theofanous,et al.  Adaptive characteristics-based matching for compressible multifluid dynamics , 2006, J. Comput. Phys..

[35]  Heinz Pitsch,et al.  An accurate conservative level set/ghost fluid method for simulating turbulent atomization , 2008, J. Comput. Phys..

[36]  O. Ubbink Numerical prediction of two fluid systems with sharp interfaces , 1997 .

[37]  Boo Cheong Khoo,et al.  The accuracy of the modified ghost fluid method for gas--gas Riemann problem , 2007 .

[38]  Boo Cheong Khoo,et al.  Ghost fluid method for strong shock impacting on material interface , 2003 .

[39]  Barry Koren,et al.  A pressure-invariant conservative Godunov-type method for barotropic two-fluid flows , 2003 .

[40]  Keh-Ming Shyue,et al.  A fluid-mixture type algorithm for compressible multicomponent flow with Mie-Grüneisen equation of state , 2001 .

[41]  Bruno Després,et al.  Numerical resolution of a two-component compressible fluid model with interfaces , 2007 .

[42]  G. Sod A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws , 1978 .

[43]  James J. Quirk,et al.  On the dynamics of a shock–bubble interaction , 1994, Journal of Fluid Mechanics.

[44]  S. Zaleski,et al.  DIRECT NUMERICAL SIMULATION OF FREE-SURFACE AND INTERFACIAL FLOW , 1999 .

[45]  S. Osher,et al.  Regular Article: A PDE-Based Fast Local Level Set Method , 1999 .

[46]  P. Smereka,et al.  A Remark on Computing Distance Functions , 2000 .

[47]  S. Osher,et al.  Computing interface motion in compressible gas dynamics , 1992 .

[48]  P. Raviart,et al.  Numerical Approximation of Hyperbolic Systems of Conservation Laws , 1996, Applied Mathematical Sciences.

[49]  Mark Sussman,et al.  An Efficient, Interface-Preserving Level Set Redistancing Algorithm and Its Application to Interfacial Incompressible Fluid Flow , 1999, SIAM J. Sci. Comput..

[50]  S. Zaleski,et al.  Modelling Merging and Fragmentation in Multiphase Flows with SURFER , 1994 .

[51]  B. P. Leonard,et al.  The ULTIMATE conservative difference scheme applied to unsteady one-dimensional advection , 1991 .

[52]  J. Haas,et al.  Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities , 1987, Journal of Fluid Mechanics.

[53]  Bruno Després,et al.  Contact Discontinuity Capturing Schemes for Linear Advection and Compressible Gas Dynamics , 2002, J. Sci. Comput..

[54]  Stéphane Dellacherie,et al.  Numerical resolution of a potential diphasic low Mach number system , 2007, J. Comput. Phys..

[55]  Rémi Abgrall,et al.  Proposition de méthodes et modèles eulériens pour les problèmes à interfaces entre fluides compressibles en présence de transfert de chaleur , 2002 .

[56]  Jiaquan Gao,et al.  How to prevent pressure oscillations in multicomponent flow calculations , 2000, Proceedings Fourth International Conference/Exhibition on High Performance Computing in the Asia-Pacific Region.

[57]  Ian M. Mitchell,et al.  A hybrid particle level set method for improved interface capturing , 2002 .

[58]  Gunilla Kreiss,et al.  A conservative level set method for two phase flow II , 2005, J. Comput. Phys..

[59]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .