The Gaia–ESO Survey: Carbon Abundance in the Galactic Thin and Thick Disks

This paper focuses on carbon, which is one of the most abundant elements in the universe and is of high importance in the field of nucleosynthesis and galactic and stellar evolution. The origin of carbon and the relative importance of massive and low- to intermediate-mass stars in producing it is still a matter of debate. We aim at better understanding the origin of carbon by studying the trends of [C/H], [C/Fe], and [C/Mg] versus [Fe/H] and [Mg/H] for 2133 FGK dwarf stars from the fifth Gaia–ESO Survey internal data release (GES iDR5). The availability of accurate parallaxes and proper motions from Gaia DR2 and radial velocities from GES iDR5 allows us to compute Galactic velocities, orbits, absolute magnitudes, and, for 1751 stars, Bayesian-derived ages. Three different selection methodologies have been adopted to discriminate between thin- and thick-disk stars. In all the cases, the two stellar groups show different [C/H], [C/Fe], and [C/Mg] and span different age intervals, with the thick-disk stars being, on average, older than the thin-disk ones. The behaviors of [C/H], [C/Fe], and [C/Mg] versus [Fe/H], [Mg/H], and age all suggest that C is primarily produced in massive stars. The increase of [C/Mg] for young thin-disk stars indicates a contribution from low-mass stars or the increased C production from massive stars at high metallicities due to the enhanced mass loss. The analysis of the orbital parameters Rmed and supports an “inside–out” and “upside–down” formation scenario for the disks of the Milky Way.

[1]  S. Lucatello,et al.  Chemical evolution of the Galactic bulge as traced by microlensed dwarf and subgiant stars - III. Detection of lithium in the metal-poor bulge dwarf MOA-2010-BLG-285S , 2010, 1009.5792.

[2]  P. Nissen,et al.  Carbon, oxygen, and iron abundances in disk and halo stars , 2019, Astronomy & Astrophysics.

[3]  D. Hogg,et al.  Toward Precise Stellar Ages: Combining Isochrone Fitting with Empirical Gyrochronology , 2019, The Astronomical Journal.

[4]  P. Ventura,et al.  The evolution of CNO isotopes: the impact of massive stellar rotators , 2019, Monthly Notices of the Royal Astronomical Society.

[5]  M. Asplund,et al.  3D non-LTE line formation of neutral carbon in the Sun , 2019, Astronomy & Astrophysics.

[6]  M. Asplund,et al.  Carbon and oxygen in metal-poor halo stars , 2019, Astronomy & Astrophysics.

[7]  V. S. Aguirre,et al.  Galactic Archaeology with asteroseismic ages: Evidence for delayed gas infall in the formation of the Milky Way disc , 2018, Astronomy & Astrophysics.

[8]  S. Feltzing,et al.  Estimating stellar ages and metallicities from parallaxes and broadband photometry: successes and shortcomings , 2018, Astronomy & Astrophysics.

[9]  H. Rix,et al.  The GALAH survey: An abundance, age, and kinematic inventory of the solar neighbourhood made with TGAS , 2018, Astronomy & Astrophysics.

[10]  B. Gustafsson,et al.  High-precision stellar abundances of the elements: methods and applications , 2018, The Astronomy and Astrophysics Review.

[11]  A. Korn,et al.  The Gaia-ESO Survey: The N/O abundance ratio in the Milky Way , 2018, Astronomy & Astrophysics.

[12]  Sergey E. Koposov,et al.  Gaia–ESO Survey: INTRIGOSS—A New Library of High-resolution Synthetic Spectra , 2018, The Astrophysical Journal.

[13]  C. Chiappini,et al.  Gas accretion in Milky Way-like galaxies: temporal and radial dependencies , 2018, Monthly Notices of the Royal Astronomical Society.

[14]  P. J. Richards,et al.  Gaia Data Release 2 , 2018, Astronomy & Astrophysics.

[15]  T. A. Lister,et al.  Gaia Data Release 2. Summary of the contents and survey properties , 2018, 1804.09365.

[16]  S. Randich,et al.  The Gaia-ESO Survey: open clusters in Gaia-DR1 , 2017, Astronomy & Astrophysics.

[17]  M. Hayden,et al.  The AMBRE project: chemical evolution models for the Milky Way thick and thin discs , 2017, 1706.02614.

[18]  B. Yanny,et al.  Milky Way Tomography with K and M Dwarf Stars: The Vertical Structure of the Galactic Disk , 2017, 1706.01900.

[19]  P. McMillan Erratum : The mass distribution and gravitational potential of the Milky Way , 2017 .

[20]  A. Bragaglia,et al.  The Gaia-ESO Survey: radial distribution of abundances in the Galactic disc from open clusters and young-field stars , 2017, 1703.00762.

[21]  P. McMillan,et al.  The mass distribution and gravitational potential of the Milky Way , 2016, 1608.00971.

[22]  V. Adibekyan,et al.  CNO behaviour in planet-harbouring stars. II. Carbon abundances in stars with and without planets using the CH band , 2016, 1611.10092.

[23]  M. Hayden,et al.  The Chemical Abundance Structure of the Inner Milky Way: A Signature of “Upside-down” Disk Formation , 2016, 1608.06342.

[24]  Liverpool John Moores University,et al.  Post first dredge-up [C/N] ratio as age indicator. Theoretical calibration , 2015, 1509.06904.

[25]  P. Prugniel,et al.  Carbon stars in the X-Shooter Spectral Library , 2015, 1602.00887.

[26]  Sergey E. Koposov,et al.  The Gaia-ESO Survey: characterisation of the [α/Fe] sequences in the Milky Way discs , 2015, 1507.08066.

[27]  U. Munari,et al.  The GALAH survey: scientific motivation , 2015, Monthly Notices of the Royal Astronomical Society.

[28]  L. Pasquini,et al.  The Gaia-ESO Survey: the analysis of high-resolution UVES spectra of FGK-type stars , 2014, 1409.0568.

[29]  W. Schuster,et al.  Carbon and oxygen abundances in stellar populations , 2014, 1406.5218.

[30]  C. Babusiaux,et al.  The Gaia-ESO Survey: processing FLAMES-UVES spectra , 2014 .

[31]  Sergey E. Koposov,et al.  The Gaia-ESO Survey : radial metallicity gradients and age-metallicity relation of stars in the Milky Way disk , 2014, 1401.4437.

[32]  D. O. Astronomy,et al.  Exploring the Milky Way stellar disk - A detailed elemental abundance study of 714 F and G dwarf stars in the solar neighbourhood , 2013, 1309.2631.

[33]  M. Lehnert,et al.  The age structure of stellar populations in the solar vicinity Clues of a two-phase formation history of the Milky Way disk , 2013, 1305.4663.

[34]  A. Robin,et al.  Kinematics and chemical properties of the Galactic stellar populations - The HARPS FGK dwarfs sample , 2013, 1304.2561.

[35]  B. Yanny,et al.  GALACTOSEISMOLOGY: DISCOVERY OF VERTICAL WAVES IN THE GALACTIC DISK , 2012, 1203.6861.

[36]  V. Adibekyan,et al.  A new α-enhanced super-solar metallicity population , 2011, 1111.4936.

[37]  L. Casagrande,et al.  New constraints on the chemical evolution of the solar neighbourhood and galactic disc(s) - improved astrophysical parameters for the Geneva-Copenhagen Survey , 2011, 1103.4651.

[38]  N. Santos,et al.  CHEMICAL CLUES ON THE FORMATION OF PLANETARY SYSTEMS: C/O VERSUS Mg/Si FOR HARPS GTO SAMPLE , 2010, Proceedings of the International Astronomical Union.

[39]  Michelle L. Wilson,et al.  Testing formation mechanisms of the Milky Way's thick disc with RAVE , 2010, 1009.2052.

[40]  F. Matteucci,et al.  Quantifying the uncertainties of chemical evolution studies II. Stellar yields , 2010, 1006.5863.

[41]  L. Mattsson The origin of carbon: Low-mass stars and an evolving, initially top-heavy IMF? , 2010, 1003.3474.

[42]  Robert Barkhouser,et al.  The Apache Point Observatory Galactic Evolution Experiment (APOGEE) , 2007, Astronomical Telescopes + Instrumentation.

[43]  W. Dehnen,et al.  Local kinematics and the local standard of rest , 2009, 0912.3693.

[44]  James Binney,et al.  Distribution functions for the Milky Way , 2009, 0910.1512.

[45]  M. Asplund,et al.  Submitted to ApJL Preprint typeset using L ATEX style emulateapj v. 08/22/09 THE PECULIAR SOLAR COMPOSITION AND ITS POSSIBLE RELATION TO PLANET FORMATION , 2022 .

[46]  Observatories of the Carnegie Institution of Washington,et al.  The evolution of carbon and oxygen in the bulge and disk of the Milky Way , 2009, 0907.4308.

[47]  Italy.,et al.  Chemical evolution of local galaxies in a hierarchical model , 2009, 0907.3729.

[48]  David R. Soderblom,et al.  The Ages of Stars , 2007, 1003.6074.

[49]  P. François,et al.  Abundance gradients in the Milky Way for α elements, iron peak elements, barium, lanthanum, and europium , 2006, astro-ph/0609813.

[50]  The origin and chemical evolution of carbon in the Galactic thin and thick discs , 2006, astro-ph/0601130.

[51]  Bangalore,et al.  Elemental abundance survey of the Galactic thick disc , 2005, astro-ph/0512505.

[52]  M. Asplund,et al.  New light on stellar abundance analyses: Departures from LTE and homogeneity. , 2005 .

[53]  Lennart Lindegren,et al.  Determination of stellar ages from isochrones: Bayesian estimation versus isochrone fitting , 2005 .

[54]  M. Mollá,et al.  Low and intermediate mass star yields: The evolution of carbon abundances , 2004, astro-ph/0411746.

[55]  M. Asplund,et al.  The Solar Chemical Composition , 2004, astro-ph/0410214.

[56]  G. Lodato,et al.  Memorie della Società Astronomica Italiana , 2005 .

[57]  C. Esteban,et al.  Carbon, Nitrogen, and Oxygen Galactic Gradients: A Solution to the Carbon Enrichment Problem , 2004, astro-ph/0408398.

[58]  L. Eyer,et al.  Isochrone ages for field dwarfs: method and application to the age–metallicity relation , 2004, astro-ph/0401418.

[59]  M. Asplund,et al.  The Evolution of the C/O Ratio in Metal-poor Halo Stars , 2003, astro-ph/0310472.

[60]  Thomas Bensby,et al.  Elemental abundance trends in the Galactic thin and thick disks as traced by nearby F and G dwarf stars , 2003 .

[61]  C. Chiappini,et al.  Stellar yields with rotation and their effect on chemical evolution models , 2003, astro-ph/0308067.

[62]  R. Drimmel,et al.  A three-dimensional Galactic extinction model , 2003, astro-ph/0307273.

[63]  C. Chiappini,et al.  Oxygen, carbon and nitrogen evolution in galaxies , 2002, astro-ph/0209627.

[64]  Tony Farrell,et al.  Installation and Commissioning of FLAMES, the VLT Multifibre Facility , 2002 .

[65]  Vertical distribution of Galactic disk stars - I. Kinematics and metallicity , 2002, astro-ph/0210628.

[66]  G. Meynet,et al.  Stellar evolution with rotation - VIII. Models at Z = 10$^\mathsf{-5}$ and CNO yields for early galactic evolution , 2002, astro-ph/0205370.

[67]  Jian-rong Shi,et al.  The C and N abundances in disk stars , 2002 .

[68]  J. Fulbright Abundances and Kinematics of Field Stars. II. Kinematics and Abundance Relationships , 2001, astro-ph/0110164.

[69]  Sources of carbon and the evolution of the abundance of CNO elements , 2001, astro-ph/0106164.

[70]  R. Fux Order and Chaos in the Local Disc Stellar Kinematics Induced by the Galactic Bar , 2001, astro-ph/0105398.

[71]  Bernard Delabre,et al.  Design, construction, and performance of UVES, the echelle spectrograph for the UT2 Kueyen Telescope at the ESO Paranal Observatory , 2000, Astronomical Telescopes and Instrumentation.

[72]  M. Edmunds,et al.  On the Cosmic Origins of Carbon and Nitrogen , 2000, astro-ph/0004299.

[73]  K. Johnston A Prescription for Building the Milky Way's Halo from Disrupted Satellites , 1997, astro-ph/9710007.

[74]  M. Groenewegen,et al.  New theoretical yields of intermediate mass stars , 1996, astro-ph/9610030.

[75]  Kathryn V. Johnston,et al.  Fossil Signatures of Ancient Accretion Events in the Halo , 1995 .

[76]  Blaine A. Bell,et al.  Atomic Line Data , 1995 .

[77]  Christopher J. Corbally,et al.  The calibration of MK spectral classes using spectral synthesis. 1: The effective temperature calibration of dwarf stars , 1994 .

[78]  T. Wilkerson,et al.  Absolute line strengths for carbon and sulfur , 1974 .

[79]  I. Iben Stellar evolution. III - The evolution of a 5 solar masses star from the main sequence through core helium burning. , 1966 .

[80]  W. Swan XXIX.—On the Prismatic Spectra of the Flames of Compounds of Carbon and Hydrogen , 1857, Transactions of the Royal Society of Edinburgh.