Whales originated from aquatic artiodactyls in the Eocene epoch of India
暂无分享,去创建一个
Sunil Bajpai | Lisa Noelle Cooper | J. Thewissen | S. Bajpai | M. Clementz | B. N. Tiwari | J. G. M. Thewissen | Mark T. Clementz | L. Cooper
[1] E. Buffetaut,et al. Oldest known Tertiary mammals from South East Asia: Middle Eocene primate and anthracotheres from Thailand , 1988 .
[2] W. P. Wall. The correlation between high limb-bone density and aquatic habits in Recent mammals , 1983 .
[3] C. Osmond,et al. Comparisons of δ13C values in leaves of aquatic macrophytes from different habitats in Britain and Finland; some implications for photosynthetic processes in aquatic plants , 1981, Oecologia.
[4] J. Barry,et al. A new species of the genus Microbunodon (Anthracotheriidae, Artiodactyla) from the Miocene of Pakistan: genus revision, phylogenetic relationships and palaeobiogeography , 2004 .
[5] M. O'Leary,et al. Phylogenetic and Morphometric Reassessment of the Dental Evidence for a Mesonychian and Cetacean Clade , 1998 .
[6] J. Thewissen,et al. Eocene mammal faunas from northern Indo-Pakistan , 2001 .
[7] Vivesh V. Kapur,et al. Early Eocene land mammals from the Vastan Lignite Mine, District Surat (Gujarat), western India , 2005 .
[8] Zhe‐Xi Luo. Homology and Transformation of Cetacean Ectotympanic Structures , 1998 .
[9] J. Thewissen,et al. CRANIAL ANATOMY OF PAKICETIDAE (CETACEA, MAMMALIA) , 2006 .
[10] J. G. Carter. Skeletal biomineralization : patterns, processes, and evolutionary trends , 1991 .
[11] J. Geisler,et al. Phylogenetic Relationships of Extinct Cetartiodactyls: Results of Simultaneous Analyses of Molecular, Morphological, and Stratigraphic Data , 2005, Journal of Mammalian Evolution.
[12] J. Geisler,et al. MORPHOLOGICAL SUPPORT FOR A CLOSE RELATIONSHIP BETWEEN HIPPOS AND WHALES , 2003 .
[13] N Okada,et al. Phylogenetic relationships among cetartiodactyls based on insertions of short and long interpersed elements: hippopotamuses are the closest extant relatives of whales. , 1999, Proceedings of the National Academy of Sciences of the United States of America.
[14] P. Gingerich,et al. ISOTOPIC RECORDS FROM EARLY WHALES AND SEA COWS: CONTRASTING PATTERNS OF ECOLOGICAL TRANSITION , 2006 .
[15] J. Thewissen,et al. Isotopic Approaches to Understanding the Terrestrial-to-Marine Transition of the Earliest Cetaceans , 1998 .
[16] S. Madar. THE POSTCRANIAL SKELETON OF EARLY EOCENE PAKICETID CETACEANS , 2007, Journal of Paleontology.
[17] James E. Cloern,et al. Stable carbon and nitrogen isotope composition of aquatic and terrestrial plants of the San Francisco Bay estuarine system , 2002 .
[18] H. Bocherens,et al. Isotopic biogeochemistry ( 13 C, 18 O) of mammalian enamel from African Pleistocene hominid sites , 1996 .
[19] P. Gingerich,et al. Terrestrial Mesonychia to Aquatic Cetacea: Transformation of the Basicranium and Evolution of Hearing in Whales , 1999 .
[20] J. Gatesy,et al. Deciphering whale origins with molecules and fossils , 2001 .
[21] G. Dubost. Un aperçu sur l’écologie du chevrotain africain Hyemoschus aquaticus Ogilby, Artiodactyle Tragulidé , 1978 .
[22] R. West. MIDDLE EOCENE LARGE MAMMAL ASSEMBLAGE WITH TETHYAN AFFINITIES, GANDA KAS REGION, PAKISTAN , 1980 .
[23] M. O'Leary,et al. The time of origin of whales and the role of behavioral changes in the terrestrial-aquatic transition , 1999, Paleobiology.
[24] M. O'Leary,et al. Carbon Isotopes in PhotosynthesisFractionation techniques may reveal new aspects of carbon dynamics in plants , 1988 .
[25] S. Ducrocq. The Late Eocene Anthracotheriidae (Mammalia, Artiodactyla) from Thailand , 1999, Palaeontographica Abteilung A.
[26] A. Sahni,et al. Eocene mammals from the Upper Subathu Group, Kashmir Himalaya, India , 1985 .
[27] F. Fish,et al. Functional correlates of differences in bone density among terrestrial and aquatic genera in the family Mustelidae (Mammalia) , 1991, Zoomorphology.
[28] A. Rao. New Mammals from Murree (Kalakot Zone) of the Himalayan Foot Hills Near Kalakot, Jammu & Kashmir State, India , 1971 .
[29] J. Thewissen,et al. Skeletons of terrestrial cetaceans and the relationship of whales to artiodactyls , 2001, Nature.
[30] M. Brunet,et al. Origins of Hippopotamidae (Mammalia, Cetartiodactyla): towards resolution , 2005 .
[31] M. Kohn. Predicting animal δ18O: Accounting for diet and physiological adaptation , 1996 .
[32] J. Bryant,et al. A MODEL OF OXYGEN ISOTOPE FRACTIONATION IN BODY WATER OF LARGE MAMMALS , 1995 .
[33] J. Thewissen,et al. The emergence of whales : evolutionary patterns in the origin of Cetacea , 1998 .
[34] S. Madar,et al. Sink or swim? Bone density as a mechanism for buoyancy control in early cetaceans , 2007, Anatomical record.
[35] J. Thewissen,et al. The Early Radiations of Cetacea (Mammalia): Evolutionary Pattern and Developmental Correlations , 2002 .
[36] R. Evershed,et al. Stable carbon isotopic evidence for differences in the dietary origin of bone cholesterol, collagen and apatite: implications for their use in palaeodietary reconstruction , 2004 .
[37] Michel C. Milinkovitch,et al. Cetaceans Are Highly Derived Artiodactyls , 1998 .
[38] M. Brunet,et al. The position of Hippopotamidae within Cetartiodactyla. , 2005, Proceedings of the National Academy of Sciences of the United States of America.
[39] M. A. Taylor. Functional significance of bone ballastin in the evolution of buoyancy control strategies by aquatic tetrapods , 2000 .
[40] J. Theodor,et al. Deciduous Dentitions of Eocene Cebochoerid Artiodactyls and Cetartiodactyl Relationships , 2005, Journal of Mammalian Evolution.
[41] V. Buffrénil,et al. HYDROSTASIS IN THE SIRENIA: QUANTITATIVE DATA and FUNCTIONAL INTERPRETATIONS , 1991 .
[42] V. Buffrénil,et al. Bone histology of the ribs of the archaeocetes (Mammalia: Cetacea) , 1990 .
[43] N. Tuross,et al. The Effects of Sample Treatment and Diagenesis on the Isotopic Integrity of Carbonate in Biogenic Hydroxylapatite , 1997 .