Stimulus reference frame and neural coding precision

Abstract Any particular stimulus intensity, as a physical quantity, can be equivalently described in different unit systems. Researchers automatically expect the methodology and the inference obtained about the neural coding precision to be independent from such a subjective choice. We show, however, that the Fisher information, which is arguably the most popular measure of coding accuracy, may yield incompatible and in fact arbitrary results just by re-evaluating the identical stimulation scenario in transformed units. We consider only regular scale transformations given by strictly increasing and differentiable functions. On one hand, our results point to a potentially problematic aspect of the Fisher information application. On the other hand, we speculate that the unwanted transformation covariance may be removed by considering the psychophysical scale based on the ideal observer paradigm. We show that such scale implies constant Fisher information and that the matching stimulus distribution is given by the Jeffreys prior. The psychophysical perspective thus provides a novel justification for the special role of the Jeffreys prior in neural coding theory.

[1]  R. R. Riesz Differential Intensity Sensitivity of the Ear for Pure Tones , 1928 .

[2]  Peter Dayan,et al.  The Effect of Correlated Variability on the Accuracy of a Population Code , 1999, Neural Computation.

[3]  E. L. Lehmann,et al.  Theory of point estimation , 1950 .

[4]  Alan A. Stocker,et al.  Is the Homunculus Aware of Sensory Adaptation? , 2009, Neural Computation.

[5]  Michael S. Lewicki,et al.  Efficient auditory coding , 2006, Nature.

[6]  S. B. Laughlin,et al.  Sexual dimorphism matches photoreceptor performance to behavioural requirements , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[7]  W. J. Studden,et al.  Theory Of Optimal Experiments , 1972 .

[8]  Raimond L Winslow,et al.  Single-tone intensity discrimination based on auditory-nerve rate responses in backgrounds of quiet, noise, and with stimulation of the crossed olivocochlear bundle , 1988, Hearing Research.

[9]  Mark D. McDonnell,et al.  Metabolic cost of neuronal information in an empirical stimulus-response model , 2013, Biological Cybernetics.

[10]  W. Newsome,et al.  The Variable Discharge of Cortical Neurons: Implications for Connectivity, Computation, and Information Coding , 1998, The Journal of Neuroscience.

[11]  J. Bernardo Reference Posterior Distributions for Bayesian Inference , 1979 .

[12]  Athanasios Papoulis,et al.  Probability, Random Variables and Stochastic Processes , 1965 .

[13]  G. Gescheider Psychophysics: The Fundamentals , 1997 .

[14]  R. Reale,et al.  Likelihood approaches to sensory coding in auditory cortex , 2003, Network.

[15]  A. Pouget,et al.  Tuning curve sharpening for orientation selectivity: coding efficiency and the impact of correlations , 2004, Nature Neuroscience.

[16]  Petr Lánský,et al.  Optimum signal in a simple neuronal model with signal-dependent noise , 2005, Biological Cybernetics.

[17]  B. Delgutte,et al.  Dynamic Range Adaptation to Sound Level Statistics in the Auditory Nerve , 2009, The Journal of Neuroscience.

[18]  I. Dean,et al.  Neural population coding of sound level adapts to stimulus statistics , 2005, Nature Neuroscience.

[19]  L M Ward,et al.  Statistical analysis of stochastic resonance in a simple setting. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[20]  H. B. Barlow,et al.  Possible Principles Underlying the Transformations of Sensory Messages , 2012 .

[21]  M. Ibbotson,et al.  Characterizing contrast adaptation in a population of cat primary visual cortical neurons using Fisher information. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[22]  Michael S. Lewicki,et al.  Efficient coding of natural sounds , 2002, Nature Neuroscience.

[23]  L. Wasserman,et al.  The Selection of Prior Distributions by Formal Rules , 1996 .

[24]  E. B. Newman,et al.  A Scale for the Measurement of the Psychological Magnitude Pitch , 1937 .

[25]  R. Z. Khasʹminskiĭ,et al.  Statistical estimation : asymptotic theory , 1981 .

[26]  Petr Lánský,et al.  Information capacity and its approximations under metabolic cost in a simple homogeneous population of neurons , 2013, Biosyst..

[27]  Johannes C. Dahmen,et al.  Adaptation to Stimulus Statistics in the Perception and Neural Representation of Auditory Space , 2010, Neuron.

[28]  Jean-Pierre Rospars,et al.  Classification of stimuli based on stimulus–response curves and their variability , 2008, Brain Research.

[29]  Petr Lánský,et al.  Optimal Signal Estimation in Neuronal Models , 2005, Neural Computation.

[30]  D. Pressnitzer,et al.  Adaptive coding is constrained to midline locations in a spatial listening task. , 2012, Journal of neurophysiology.

[31]  Ernst Heinrich Weber,et al.  De pulsu, resorptione, auditu et tactu. Annotationes anatomicae et physiologicae , 1834 .

[32]  Terrence J. Sejnowski,et al.  Neuronal Tuning: To Sharpen or Broaden? , 1999, Neural Computation.

[33]  Christian W. Eurich,et al.  Representational Accuracy of Stochastic Neural Populations , 2002, Neural Computation.

[34]  W. G. Owen,et al.  Temporal filtering in retinal bipolar cells. Elements of an optimal computation? , 1990, Biophysical journal.

[35]  Nicolas Brunel,et al.  Mutual Information, Fisher Information, and Population Coding , 1998, Neural Computation.

[36]  Paul V. Watkins,et al.  Specialized neuronal adaptation for preserving input sensitivity , 2008, Nature Neuroscience.

[37]  J. Rospars,et al.  Competitive and Noncompetitive Odorant Interactions in the Early Neural Coding of Odorant Mixtures , 2008, The Journal of Neuroscience.

[38]  David McAlpine,et al.  Optimal neural population coding of an auditory spatial cue , 2004, Nature.

[39]  Daniel R. Raichel The science and applications of acoustics , 2000 .

[40]  Matthias Bethge,et al.  Optimal Short-Term Population Coding: When Fisher Information Fails , 2002, Neural Computation.

[41]  Petr Lánský,et al.  Coding Accuracy Is Not Fully Determined by the Neuronal Model , 2015, Neural Computation.

[42]  J A Garcia-Lazaro,et al.  Shifting and scaling adaptation to dynamic stimuli in somatosensory cortex , 2011, The European journal of neuroscience.

[43]  M. Stemmler A single spike suffices: the simplest form of stochastic resonance in model neurons , 1996 .

[44]  Ondrej Pokora,et al.  On the Cramér-Rao bound applicability and the role of Fisher information in computational neuroscience , 2015, Biosyst..

[45]  Wainrib Gilles,et al.  Intrinsic variability of latency to first-spike , 2010 .

[46]  Petr Lansky,et al.  Performance breakdown in optimal stimulus decoding , 2015, Journal of neural engineering.

[47]  S. Laughlin A Simple Coding Procedure Enhances a Neuron's Information Capacity , 1981, Zeitschrift fur Naturforschung. Section C, Biosciences.

[48]  Xue-Xin Wei,et al.  A Bayesian observer model constrained by efficient coding can explain 'anti-Bayesian' percepts , 2015, Nature Neuroscience.

[49]  Vivek K. Goyal,et al.  A framework for Bayesian optimality of psychophysical laws , 2012, Journal of Mathematical Psychology.

[50]  Peter Dayan,et al.  Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems , 2001 .

[51]  H. Jeffreys An invariant form for the prior probability in estimation problems , 1946, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[52]  Edward Challis,et al.  Fisher and Shannon Information in Finite Neural Populations , 2012, Neural Computation.

[53]  Kelvin E. Jones,et al.  Neuronal variability: noise or part of the signal? , 2005, Nature Reviews Neuroscience.

[54]  Joseph J Atick,et al.  Could information theory provide an ecological theory of sensory processing? , 2011, Network.

[55]  Eero P. Simoncelli,et al.  Natural image statistics and neural representation. , 2001, Annual review of neuroscience.

[56]  M. Paradiso,et al.  A theory for the use of visual orientation information which exploits the columnar structure of striate cortex , 2004, Biological Cybernetics.

[57]  B L McNaughton,et al.  Interpreting neuronal population activity by reconstruction: unified framework with application to hippocampal place cells. , 1998, Journal of neurophysiology.

[58]  L. M. Ward,et al.  Stochastic resonance enhances the electrosensory information available to paddlefish for prey capture. , 2000, Physical review letters.

[59]  Sergio Cesare Masin THE (WEBER’S) LAW THAT NEVER WAS , 2009 .

[60]  Dennis L Barbour,et al.  Level-tuned neurons in primary auditory cortex adapt differently to loud versus soft sounds. , 2011, Cerebral cortex.

[61]  Thilo Womelsdorf,et al.  Predicting human perceptual decisions by decoding neuronal information profiles , 2008, Biological Cybernetics.

[62]  Petr Lánský,et al.  Efficient Olfactory Coding in the Pheromone Receptor Neuron of a Moth , 2008, PLoS Comput. Biol..

[63]  J. Schnupp,et al.  Shifting and scaling adaptation to dynamic stimuli in somatosensory cortex , 2007 .

[64]  M. McDonnell,et al.  Maximally informative stimuli and tuning curves for sigmoidal rate-coding neurons and populations. , 2008, Physical review letters.

[65]  Marie Levakova,et al.  Effect of spontaneous activity on stimulus detection in a simple neuronal model. , 2016, Mathematical biosciences and engineering : MBE.

[66]  H. Colonius,et al.  The Fechnerian idea. , 2011, The American journal of psychology.

[67]  Lawrence D. Brown,et al.  Information Inequalities for the Bayes Risk , 1990 .