Global optimization of Hölder functions

We propose a branch-and-bound framework for the global optimization of unconstrained Hölder functions. The general framework is used to derive two algorithms. The first one is a generalization of Piyavskii's algorithm for univariate Lipschitz functions. The second algorithm, using a piecewise constant upper-bounding function, is designed for multivariate Hölder functions. A proof of convergence is provided for both algorithms. Computational experience is reported on several test functions from the literature.

[1]  J. F. Price,et al.  On descent from local minima , 1971 .

[2]  Brigitte Jaumard,et al.  Multivariate Lipschitz optimization: Survey and computational comparison , 1994 .

[3]  F. H. Branin Widely convergent method for finding multiple solutions of simultaneous nonlinear equations , 1972 .

[4]  P. Basso Iterative Methods for the Localization of the Global Maximum , 1982 .

[5]  James J. Solberg,et al.  Operations Research: Principles and Practice. , 1977 .

[6]  J. McNiff Action Research Principles and Practice , 1988 .

[7]  Nicola Santoro,et al.  Min-max heaps and generalized priority queues , 1986, CACM.

[8]  Garth P. McCormick,et al.  Computability of global solutions to factorable nonconvex programs: Part I — Convex underestimating problems , 1976, Math. Program..

[9]  Klaus Schittkowski,et al.  More test examples for nonlinear programming codes , 1981 .

[10]  Regina Hunter Mladineo Stochastic Minimization of Lipschitz Functions , 1991 .

[11]  Regina Hunter Mladineo An algorithm for finding the global maximum of a multimodal, multivariate function , 1986, Math. Program..

[12]  Pierre Hansen,et al.  On the Number of Iterations of Piyavskii's Global Optimization Algorithm , 1991, Math. Oper. Res..

[13]  S. A. Piyavskii An algorithm for finding the absolute extremum of a function , 1972 .

[14]  Jacques-François Thisse,et al.  Uncapacitated plant location under alternative spatial price policies , 1990 .

[15]  A. V. Levy,et al.  Topics in global optimization , 1982 .

[16]  R. Horst,et al.  Global Optimization: Deterministic Approaches , 1992 .

[17]  David G. Luenberger,et al.  Linear and nonlinear programming , 1984 .