Estimating and Identifying Unspecified Correlation Structure for Longitudinal Data
暂无分享,去创建一个
Peng Wang | Jianhua Hu | Annie Qu | A. Qu | Jianhua Hu | P. Wang
[1] P. Bickel,et al. Covariance regularization by thresholding , 2009, 0901.3079.
[2] R. Tibshirani,et al. Sparse inverse covariance estimation with the graphical lasso. , 2008, Biostatistics.
[3] Xiaotong Shen,et al. Structural Pursuit Over Multiple Undirected Graphs , 2014, Journal of the American Statistical Association.
[4] Jianhua Z. Huang. Covariance selection and estimation via penalised normal likelihood , 2005 .
[5] Noureddine El Karoui,et al. Operator norm consistent estimation of large-dimensional sparse covariance matrices , 2008, 0901.3220.
[6] Ji Zhu,et al. Sparse Ising Models with Covariates , 2012, ArXiv.
[7] Sadanori Konishi,et al. Asymptotic expansions for the distributions of statistics based on the sample correlation matrix in principal component analysis , 1979 .
[8] Adam J. Rothman,et al. Generalized Thresholding of Large Covariance Matrices , 2009 .
[9] Wenjiang J. Fu,et al. Penalized Estimating Equations , 2003, Biometrics.
[10] L. Hansen. Large Sample Properties of Generalized Method of Moments Estimators , 1982 .
[11] H. Zou. The Adaptive Lasso and Its Oracle Properties , 2006 .
[12] Jianhua Z. Huang,et al. Estimation of Large Covariance Matrices of Longitudinal Data With Basis Function Approximations , 2007 .
[13] S. Zeger,et al. Longitudinal data analysis using generalized linear models , 1986 .
[14] Adam J. Rothman. Positive definite estimators of large covariance matrices , 2012 .
[15] Peter Wonka,et al. Fused Multiple Graphical Lasso , 2012, SIAM J. Optim..
[16] Ji Zhu,et al. Sparse Regulatory Networks. , 2010, The annals of applied statistics.
[17] E. Levina,et al. Joint estimation of multiple graphical models. , 2011, Biometrika.
[18] Peng Wang,et al. Conditional Inference Functions for Mixed-Effects Models With Unspecified Random-Effects Distribution , 2012 .
[19] A. U.S.,et al. Sparse Estimation of a Covariance Matrix , 2010 .
[20] Pei Wang,et al. Partial Correlation Estimation by Joint Sparse Regression Models , 2008, Journal of the American Statistical Association.
[21] A. Qu,et al. Informative Estimation and Selection of Correlation Structure for Longitudinal Data , 2012 .
[22] H. Zou,et al. One-step Sparse Estimates in Nonconcave Penalized Likelihood Models. , 2008, Annals of statistics.
[23] Han Liu,et al. TIGER: A Tuning-Insensitive Approach for Optimally Estimating Gaussian Graphical Models , 2012, 1209.2437.
[24] Terrence J. Sejnowski,et al. Analysis of hidden units in a layered network trained to classify sonar targets , 1988, Neural Networks.
[25] Peng Wang. Mixed effects modeling and correlation structure selection for high dimensional correlated data , 2011 .
[26] Wei Pan,et al. Maximum Likelihood Estimation Over Directed Acyclic Gaussian Graphs , 2012, Stat. Anal. Data Min..
[27] R. W. Wedderburn. Quasi-likelihood functions, generalized linear models, and the Gauss-Newton method , 1974 .
[28] R. Tibshirani,et al. Least angle regression , 2004, math/0406456.
[29] B. Lindsay,et al. Improving generalised estimating equations using quadratic inference functions , 2000 .
[30] Jianqing Fan,et al. Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties , 2001 .
[31] Naisyin Wang. Marginal nonparametric kernel regression accounting for within‐subject correlation , 2003 .
[32] Xiaotong Shen,et al. Journal of the American Statistical Association Likelihood-based Selection and Sharp Parameter Estimation Likelihood-based Selection and Sharp Parameter Estimation , 2022 .
[33] Bruce G. Lindsay,et al. Building adaptive estimating equations when inverse of covariance estimation is difficult , 2003 .
[34] Adam J. Rothman,et al. Sparse estimation of large covariance matrices via a nested Lasso penalty , 2008, 0803.3872.
[35] Jianqing Fan,et al. High dimensional covariance matrix estimation using a factor model , 2007, math/0701124.
[36] Jianhua Z. Huang,et al. Covariance matrix selection and estimation via penalised normal likelihood , 2006 .