2-D direction-of-arrival estimation of coherent signals using cross-correlation matrix

In this paper, we present a new two-dimensional (2-D) direction-of-arrival (DOA) angle estimation method for coherent or highly correlated narrowband signals using L-shape arrays. The proposed method decorrelates the coherent incident signals and reconstructs the signal subspace using the cross-correlation matrix. Then the shift invariance property of the array geometry is employed to estimate the azimuth and elevation angles. This approach enables the 2-D DOA estimation without the use of peak search and is robust to noise. Moreover, we extend the proposed forward method to the forward/backward one. Experimental results demonstrate that satisfactory performances of the proposed methods are obtained for correlated signals in the low signal-to-noise ratio (SNR) situations and with small number of snapshots.

[1]  A. Gershman,et al.  Optimal subarray size for spatial smoothing , 1995, IEEE Signal Processing Letters.

[2]  Petre Stoica,et al.  Adaptive instrumental variable method for robust direction-of-arrival estimation , 1995 .

[3]  Petre Stoica,et al.  MUSIC, maximum likelihood and Cramer-Rao bound , 1988, ICASSP-88., International Conference on Acoustics, Speech, and Signal Processing.

[4]  Richard J. Kozick,et al.  A unified approach to coherent source decorrelation by autocorrelation matrix smoothing , 1995 .

[5]  B. Friedlander,et al.  Direction finding using spatial smoothing with interpolated arrays , 1992 .

[6]  S. Unnikrishna Pillai,et al.  Forward/backward spatial smoothing techniques for coherent signal identification , 1989, IEEE Trans. Acoust. Speech Signal Process..

[7]  N. Tayem,et al.  L-shape 2-dimensional arrival angle estimation with propagator method , 2005 .

[8]  R. O. Schmidt,et al.  Multiple emitter location and signal Parameter estimation , 1986 .

[9]  Éloi Bossé,et al.  A new spatial smoothing scheme for direction-of-arrivals of correlated sources , 1996, Signal Process..

[10]  S. Kikuchi,et al.  Pair-Matching Method for Estimating 2-D Angle of Arrival With a Cross-Correlation Matrix , 2006, IEEE Antennas and Wireless Propagation Letters.

[11]  M. Viberg,et al.  Two decades of array signal processing research: the parametric approach , 1996, IEEE Signal Process. Mag..

[12]  Jian Li,et al.  Improved angular resolution for spatial smoothing techniques , 1992, IEEE Trans. Signal Process..

[13]  Petre Stoica,et al.  Performance study of conditional and unconditional direction-of-arrival estimation , 1990, IEEE Trans. Acoust. Speech Signal Process..

[14]  Thomas Kailath,et al.  On spatial smoothing for direction-of-arrival estimation of coherent signals , 1985, IEEE Trans. Acoust. Speech Signal Process..

[15]  Kui Liu,et al.  2-D spatial smoothing for multipath coherent signal separation , 1998 .

[16]  Björn E. Ottersten,et al.  Instrumental variable approach to array processing in spatially correlated noise fields , 1994, IEEE Trans. Signal Process..

[17]  Carl D. Meyer,et al.  Matrix Analysis and Applied Linear Algebra , 2000 .

[18]  Peter Strobach Bi-iteration recursive instrumental variable subspace tracking and adaptive filtering , 1998, IEEE Trans. Signal Process..

[19]  Jingmin Xin,et al.  Computationally efficient subspace-based method for direction-of-arrival estimation without eigendecomposition , 2004, IEEE Transactions on Signal Processing.

[20]  Björn E. Ottersten,et al.  Array processing in correlated noise fields based on instrumental variables and subspace fitting , 1995, IEEE Trans. Signal Process..

[21]  Alex B. Gershman,et al.  An alternative approach to coherent source location problem , 1997, Signal Process..

[22]  A. Swindlehurst,et al.  Subspace-based signal analysis using singular value decomposition , 1993, Proc. IEEE.

[23]  Thomas Kailath,et al.  ESPRIT-estimation of signal parameters via rotational invariance techniques , 1989, IEEE Trans. Acoust. Speech Signal Process..

[24]  Y. Hua,et al.  An L-shaped array for estimating 2-D directions of wave arrival , 1991 .

[25]  Björn E. Ottersten,et al.  Detection and estimation in sensor arrays using weighted subspace fitting , 1991, IEEE Trans. Signal Process..