Pseudospectral Optimal Control and Its Convergence Theorems

Summary. During the last decade, pseudospectral (PS) optimal control methods have emerged as demonstrable efficient methods for computational nonlinear optimal control. Some fundamental problems on the feasibility and convergence of the Legendre PS method are addressed. In the first part of this paper, we summarize the main results published separately in a series of papers on these topics. Then, a new result on the feasibility and convergence is proved. Different from existing results in the literature, in this new theorem neither the invertibility of necessary conditions nor the existence of limit points is assumed.

[1]  I. Michael Ross,et al.  A unified computational framework for real-time optimal control , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[2]  Jeremy Rea,et al.  Launch Vehicle Trajectory Optimization Using a Legendre Pseudospectral Method , 2003 .

[3]  Elijah Polak,et al.  Optimization: Algorithms and Consistent Approximations , 1997 .

[4]  I.M. Ross,et al.  Time-optimal nonlinear feedback control for the NPSAT1 spacecraft , 2005, Proceedings, 2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronics..

[5]  I. Michael Ross,et al.  Issues in the real-time computation of optimal control , 2006, Math. Comput. Model..

[6]  Wei Kang,et al.  Pseudospectral Feedback Control: Foundations, Examples and Experimental Results , 2006 .

[7]  Wei Kang,et al.  Practical stabilization through real-time optimal control , 2006, 2006 American Control Conference.

[8]  William W. Hager,et al.  Runge-Kutta methods in optimal control and the transformed adjoint system , 2000, Numerische Mathematik.

[9]  Wei Kang,et al.  Convergence of Pseudospectral Methods for a Class of Discontinuous Optimal Control , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[10]  I. Michael Ross,et al.  Pseudospectral Methods for Infinite-Horizon Nonlinear Optimal Control Problems , 2005 .

[11]  Gamal N. Elnagar,et al.  Pseudospectral Chebyshev Optimal Control of Constrained Nonlinear Dynamical Systems , 1998, Comput. Optim. Appl..

[12]  Stephen M. Robinson,et al.  Strongly Regular Generalized Equations , 1980, Math. Oper. Res..

[13]  William W. Hager,et al.  The Euler approximation in state constrained optimal control , 2001, Math. Comput..

[14]  I. Michael Ross,et al.  Direct Trajectory Optimization by a Chebyshev Pseudospectral Method ; Journal of Guidance, Control, and Dynamics, v. 25, 2002 ; pp. 160-166 , 2002 .

[15]  L. S. Pontryagin,et al.  Mathematical Theory of Optimal Processes , 1962 .

[16]  I. Michael Ross,et al.  Costate Estimation by a Legendre Pseudospectral Method , 1998 .

[17]  Stephen M. Robinson,et al.  An Implicit-Function Theorem for a Class of Nonsmooth Functions , 1991, Math. Oper. Res..

[18]  Qi Gong,et al.  A pseudospectral method for the optimal control of constrained feedback linearizable systems , 2006, IEEE Transactions on Automatic Control.

[19]  I. Michael Ross,et al.  Pseudospectral Knotting Methods for Solving Optimal Control Problems , 2004 .

[20]  Gamal N. Elnagar,et al.  The pseudospectral Legendre method for discretizing optimal control problems , 1995, IEEE Trans. Autom. Control..

[21]  J. Cullum Finite-Dimensional Approximations of State-Constrained Continuous Optimal Control Problems , 1972 .

[22]  E. Polak,et al.  Consistent Approximations for Optimal Control Problems Based on Runge--Kutta Integration , 1996 .

[23]  I. Michael Ross,et al.  Optimal Nonlinear Feedback Guidance for Reentry Vehicles , 2006 .

[24]  Ping Lu,et al.  Closed-loop endoatmospheric ascent guidance , 2003 .