Growth and Evolution of Asteroids

Asteroids are what is left of the precursors to the terrestrial planets. They are stunning in their diversity, ranging from charcoal-black worlds the size of a hilltop, spinning like a carnival ride, to dog-bone-shaped metallic remnants of some cataclysmically disrupted planetary core, to worlds as stately as Ceres and Vesta (and fragments thereof), to garden-variety fractured and blocky nuggets that dominate near-Earth space. Asteroid belts are common around Sun-like stars. When properly seen as unaccreted residues, as scraps on the floor of the planetary bakery, the diversity of asteroids can be fully appreciated, for to paraphrase Tolstoy, accreted planets are all alike; every unaccreted planet is unaccreted in its own way.

[1]  K. Keil,et al.  Meteoritic parent bodies: Their number and identification , 2002 .

[2]  D. Vokrouhlický,et al.  The Breakup of a Main-Belt Asteroid 450 Thousand Years Ago , 2006, Science.

[3]  E. V. Pitjeva,et al.  Hidden Mass in the Asteroid Belt , 2002 .

[4]  R. Gil-Hutton,et al.  Collisional evolution of small body populations , 2002 .

[5]  S. P. Worden,et al.  The flux of small near-Earth objects colliding with the Earth , 2002, Nature.

[6]  J. Chambers,et al.  Planets in the asteroid belt , 2001 .

[7]  J. Kawaguchi,et al.  The Rubble-Pile Asteroid Itokawa as Observed by Hayabusa , 2006, Science.

[8]  Erik Asphaug,et al.  Structure of Comet Shoemaker-Levy 9 Inferred from the Physics of Tidal Breakup , 1996 .

[9]  M. Shepard,et al.  Near-Earth asteroid surface roughness depends on compositional class , 2008 .

[10]  Veverka,et al.  Radio science results during the NEAR-shoemaker spacecraft rendezvous with eros , 2000, Science.

[11]  J. Wood The cooling rates and parent planets of several iron meteorites , 1964 .

[12]  Z. Ivezic,et al.  Solar system objects observed in the Sloan Digital Sky Survey commissioning data , 2001 .

[13]  S. Ostro,et al.  Dynamical Configuration of Binary Near-Earth Asteroid (66391) 1999 KW4 , 2006, Science.

[14]  H. McSween,et al.  Asteroidal Heating and Thermal Stratification of the Asteroidal Belt , 2006 .

[15]  George W. Wetherill,et al.  Formation of the Earth , 1990 .

[16]  Trujillo,et al.  Population of the Scattered Kuiper Belt. , 2000, The Astrophysical journal.

[17]  Klaus Keil,et al.  Geological History of Asteroid 4 Vesta: The "Smallest Terrestrial Planet" , 2002 .

[18]  W. Benz Low Velocity Collisions and the Growth of Planetesimals , 2000 .

[19]  Vincenzo Zappala,et al.  Do asteroids have satellites , 1989 .

[20]  William K. Hartmann,et al.  Planetesimals to planets: Numerical simulation of collisional evolution , 1978 .

[21]  Harold F. Levison,et al.  On the Character and Consequences of Large Impacts in the Late Stage of Terrestrial Planet Formation , 1999 .

[22]  Harold F. Levison,et al.  The recent breakup of an asteroid in the main-belt region , 2002, Nature.

[23]  D. Rubincam,et al.  Radiative Spin-up and Spin-down of Small Asteroids , 2000 .

[24]  George W. Wetherill,et al.  Accumulation of a swarm of small planetesimals , 1989 .

[25]  Willy Benz,et al.  Collisional stripping of Mercury's mantle , 1988 .

[26]  Evans,et al.  The elemental composition of asteroid 433 eros: results of the NEAR-shoemaker X-ray spectrometer , 2000, Science.

[27]  Andrew Scott Rivkin,et al.  The Nature of M-Class Asteroids from 3-μm Observations☆ , 2000 .

[28]  Richard P. Binzel,et al.  Phase II of the Small Main-Belt Asteroid Spectroscopic Survey: A Feature-Based Taxonomy , 2002 .

[29]  G. Michalak,et al.  Determination of asteroid masses , 2000 .

[30]  James G. Williams,et al.  Determining asteroid masses from perturbations on Mars , 1984 .

[31]  A. Fujiwara,et al.  Impact fracture patterns on phobos ellipsoids , 1983 .

[32]  Andrew Scott Rivkin,et al.  The surface composition of Ceres: Discovery of carbonates and iron-rich clays , 2006 .

[33]  W. Benz,et al.  Catastrophic Disruptions Revisited , 1999 .

[34]  Lance A. M. Benner,et al.  Asteroid Radar Astronomy , 1983 .

[35]  E. Asphaug Impact origin of the Vesta family , 1997 .

[36]  C. T. Russell,et al.  Differentiation of the asteroid Ceres as revealed by its shape , 2005, Nature.

[37]  P. Michel,et al.  Rotational breakup as the origin of small binary asteroids , 2008, Nature.

[38]  Erik Asphaug,et al.  Hit-and-run planetary collisions , 2006, Nature.

[39]  D. Campbell,et al.  Binary Asteroids in the Near-Earth Object Population , 2002, Science.

[40]  S. Ostro,et al.  Radar observations of asteroid 216 kleopatra , 2000, Science.

[41]  P. Weissman,et al.  Structure and density of cometary nuclei , 2008 .

[42]  David Jewitt,et al.  Kuiper Belt Objects: Relics from the Accretion Disk of the Sun , 2002 .

[43]  S. Ostro,et al.  A radar survey of main-belt asteroids: Arecibo observations of 55 objects during 1999–2003 , 2007 .

[44]  Stefano Mottola,et al.  Thermal inertia of near-Earth asteroids and implications for the magnitude of the Yarkovsky effect , 2007, 0704.1915.

[45]  L. Prockter,et al.  433 Eros lineaments: Global mapping and analysis , 2008 .

[46]  David Jewitt,et al.  A Population of Comets in the Main Asteroid Belt , 2006, Science.

[47]  Robert Jedicke,et al.  Observational Selection Effects in Asteroid Surveys , 2002 .

[48]  Re'em Sari,et al.  Formation of Kuiper-belt binaries by dynamical friction and three-body encounters , 2002, Nature.

[49]  R. Roy,et al.  Photometric Survey of Binary Near-Earth Asteroids , 2006 .

[50]  Grzegorz Michalak,et al.  Determination of Asteroid Masses , 2000 .

[51]  T. Kleine,et al.  Early core formation in asteroids and late accretion of chondrite parent bodies: Evidence from 182Hf-182W in CAIs, metal-rich chondrites, and iron meteorites , 2005 .

[52]  Eiichiro Kokubo,et al.  Oligarchic growth of protoplanets , 1996 .

[53]  Erik Asphaug,et al.  Accretion Efficiency during Planetary Collisions , 2004 .

[54]  Petr Pravec,et al.  Direct Detection of the Asteroidal YORP Effect , 2007, Science.

[55]  Paul J. Stomski,et al.  A low density of 0.8 g cm-3 for the Trojan binary asteroid 617 Patroclus , 2006, Nature.

[56]  Jean-Luc Margot,et al.  Direct Detection of the Yarkovsky Effect by Radar Ranging to Asteroid 6489 Golevka , 2003, Science.

[57]  Derek C. Richardson,et al.  The formation of asteroid satellites in large impacts: Results from numerical simulations , 2004 .

[58]  Masanao Abe,et al.  Itokawa: The power of ground-based mid-infrared observations , 2006, Proceedings of the International Astronomical Union.

[59]  W. Bottke,et al.  Origin and Evolution of Near-Earth Objects , 2002 .

[60]  M. Gaffey,et al.  Composition of 298 Baptistina: Implications for the K/T impactor link , 2009 .

[61]  S. Philander Where Are You From? Why Are You Here? An African Perspective on Global Warming , 2009 .

[62]  A. Fitzsimmons,et al.  Spin Rate of Asteroid (54509) 2000 PH5 Increasing Due to the YORP Effect , 2007, Science.

[63]  J. Miller,et al.  Determination of Shape, Gravity, and Rotational State of Asteroid 433 Eros , 2002 .

[64]  Takahide Mizuno,et al.  Mass and Local Topography Measurements of Itokawa by Hayabusa , 2006, Science.

[65]  Zuber,et al.  The shape of 433 eros from the NEAR-shoemaker laser rangefinder , 2000, Science.

[66]  William F. Bottke,et al.  An asteroid breakup 160 Myr ago as the probable source of the K/T impactor , 2007, Nature.

[67]  Lance A. M. Benner,et al.  Predicting the Earth encounters of (99942) Apophis , 2008 .

[68]  D. Campbell,et al.  Radar observations of asteroid 1999 JM8 , 2001 .

[69]  Y. Amelin,et al.  Lead Isotopic Ages of Chondrules and Calcium-Aluminum-Rich Inclusions , 2002, Science.

[70]  M. Bizzarro,et al.  Chronology of the Solar System’s Oldest Solids , 2008 .

[71]  J. Cuzzi,et al.  Size-selective Concentration of Chondrules and Other Small Particles in Protoplanetary Nebula Turbulence , 2000, astro-ph/0009210.

[72]  C. Sotin,et al.  Ceres: Evolution and current state , 2005 .

[73]  J. Clack,et al.  The Fin to Limb Transition: New Data, Interpretations, and Hypotheses from Paleontology and Developmental Biology , 2009 .

[74]  Sho Sasaki,et al.  Production of iron nanoparticles by laser irradiation in a simulation of lunar-like space weathering , 2001, Nature.

[75]  R. Jedicke,et al.  Debiased Orbital and Absolute Magnitude Distribution of the Near-Earth Objects , 2002 .

[76]  Alessandro Morbidelli,et al.  Iron meteorites as remnants of planetesimals formed in the terrestrial planet region , 2006, Nature.

[77]  P. Farinella,et al.  Efficient delivery of meteorites to the Earth from a wide range of asteroid parent bodies , 2000, Nature.

[78]  D. Prialnik,et al.  Thermal and Chemical Evolution of Comet Nuclei and Kuiper Belt Objects , 2008 .

[79]  Li,et al.  NEAR at eros: imaging and spectral results , 2000, Science.

[80]  J. Miller,et al.  The Shape of Eros from NEAR Imaging Data , 2000 .

[81]  Michael R. Meyer,et al.  Evolution of Mid-Infrared Excess around Sun-like Stars: Constraints on Models of Terrestrial Planet Formation , 2007, 0712.1057.

[82]  R. S. Hudson,et al.  Orbits Close to Asteroid 4769 Castalia , 1996 .

[83]  G. Wetherill,et al.  Provenance of the terrestrial planets. , 1994, Geochimica et cosmochimica acta.

[84]  Petr Pravec,et al.  Binary asteroid population 1. Angular momentum content , 2007 .

[85]  Edward R. D. Scott,et al.  Chondrules and the Protoplanetary Disk , 2011 .

[86]  Angioletta Coradini,et al.  Dawn: A journey in space and time , 2003 .

[87]  Brian Carcich,et al.  A ballistics analysis of the Deep Impact ejecta plume: Determining Comet Tempel 1's gravity, mass, and density , 2007 .

[88]  William F. Bottke,et al.  THE YARKOVSKY AND YORP EFFECTS: Implications for Asteroid Dynamics , 2006 .

[89]  William F. Bottke,et al.  Formation of asteroid satellites and doublet craters by planetary tidal forces , 1996, Nature.

[90]  K. Holsapple Spin limits of Solar System bodies: From the small fast-rotators to 2003 EL61 , 2007 .

[91]  S. Weidenschilling,et al.  Particle-Gas Dynamics and Primary Accretion , 2006 .

[92]  M. Ćuk Formation and Destruction of Small Binary Asteroids , 2007 .

[93]  W. Benz,et al.  Density of comet Shoemaker–Levy 9 deduced by modelling breakup of the parent 'rubble pile' , 1994, Nature.

[94]  C. Trujillo,et al.  Large Kuiper Belt Objects: The Mauna Kea 8K CCD Survey , 1998 .

[95]  Daniel J. Scheeres,et al.  Rotational fission of contact binary asteroids , 2007 .

[96]  P. Weissman,et al.  Rapid collisional evolution of comets during the formation of the Oort cloud , 2001, Nature.

[97]  R. Binzel,et al.  Mantle material in the main belt: Battered to bits? , 1996 .

[98]  A. Gaudin Principles of Mineral Dressing , 1939 .

[99]  P. Cassen,et al.  Theoretical, observational, and isotopic estimates of the lifetime of the solar nebula , 1994 .

[100]  R. Binzel,et al.  Chips off of Asteroid 4 Vesta: Evidence for the Parent Body of Basaltic Achondrite Meteorites , 1993, Science.

[101]  B. Schmitz,et al.  Sediment-Dispersed Extraterrestrial Chromite Traces a Major Asteroid Disruption Event , 2003, Science.

[102]  Harold F. Levison,et al.  Dynamical Lifetimes of Objects Injected into Asteroid Belt Resonances , 1997 .

[103]  C. Trujillo,et al.  A new dynamical class of object in the outer Solar System , 1997, Nature.

[104]  W. Hartmann,et al.  Meteorite Delivery via Yarkovsky Orbital Drift , 1998 .

[105]  W. Bottke,et al.  Detection of the Yarkovsky effect for main-belt asteroids , 2004 .

[106]  Brian Warner,et al.  NEA rotations and binaries , 2006, Proceedings of the International Astronomical Union.

[107]  F. Kyte A meteorite from the Cretaceous/Tertiary boundary , 1998, Nature.

[108]  Erik Asphaug,et al.  Origin of the Moon in a giant impact near the end of the Earth's formation , 2001, Nature.

[109]  A. Freed,et al.  Thermally induced lineations on the asteroid Eros: Evidence of orbit transfer , 2002 .

[110]  Alberto Cellino,et al.  Asteroid Families: Search of a 12,487-Asteroid Sample Using Two Different Clustering Techniques , 1995 .

[111]  D. Davis,et al.  Collisional history of asteroids: Evidence from Vesta and the Hirayama families , 1985 .

[112]  R. Sullivan,et al.  Mechanical and geological effects of impact cratering on Ida , 1996 .

[113]  T. Nakamura,et al.  Subaru Main Belt Asteroid Survey (SMBAS)—Size and color distributions of small main-belt asteroids , 2007 .

[114]  J. S. Dohnanyi Collisional model of asteroids and their debris , 1969 .

[116]  H. McSween,et al.  A Thermal Model for the Differentiation of Asteroid 4 Vesta, Based on Radiogenic Heating☆ , 1998 .

[117]  Daniel J. Scheeres,et al.  Radar Imaging of Binary Near-Earth Asteroid (66391) 1999 KW4 , 2006, Science.

[118]  G. Schubert,et al.  Hydrothermal convection in carbonaceous chondrite parent bodies , 2005 .

[119]  Andrew Steele,et al.  Comet 81P/Wild 2 Under a Microscope , 2006, Science.

[120]  P. Farinella,et al.  The asteroids as outcomes of catastrophic collisions , 1982 .

[121]  C. Dominik,et al.  Growth of Dust as the Initial Step Toward Planet Formation , 2006, astro-ph/0602617.

[122]  S. Stewart,et al.  Full numerical simulations of catastrophic small body collisions , 2008, 0811.0175.

[123]  James K. Mitchell,et al.  Soil mechanical properties at the Apollo 14 site , 1972 .

[124]  J. Veverka,et al.  Surface Expressions of Structural Features on Eros , 2002 .