Phase I Solicitation

This subtopic addresses the unique problem of imaging and spectroscopic characterization of faint astrophysical objects that are located within the obscuring glare of much brighter stellar sources. Examples include planetary systems beyond our own, the detailed inner structure of galaxies with very bright nuclei, binary star formation, and stellar evolution. Contrast ratios of one million to ten billion over an angular spatial scale of 0.05-1.5 arcsec are typical of these objects. Achieving a very low background requires control of both scattered and diffracted light. The failure to control either amplitude or phase fluctuations in the optical train severely reduces the effectiveness of starlight cancellation schemes. This innovative research focuses on advances in coronagraphic instruments, starlight cancellation instruments, and potential occulting technologies that operate at visible and near infrared wavelengths. The ultimate application of these instruments is to operate in space as part of a future observatory mission. Measurement techniques include imaging, photometry, spectroscopy, and polarimetry. There is interest in component development, and innovative instrument design, as well as in the fabrication of subsystem devices to include, but not limited to, the following areas: