An analytical framework for whole-genome sequence association studies and its implications for autism spectrum disorder

[1]  Ryan L. Collins,et al.  Multi-platform discovery of haplotype-resolved structural variation in human genomes , 2017, Nature Communications.

[2]  Matthew C. Keller,et al.  No Evidence That Schizophrenia Candidate Genes Are More Associated With Schizophrenia Than Noncandidate Genes , 2017, Biological Psychiatry.

[3]  Len A. Pennacchio,et al.  Genomic Patterns of De Novo Mutation in Simplex Autism , 2017, Cell.

[4]  Yufeng Shen,et al.  Contribution of rare inherited and de novo variants in 2,871 congenital heart disease probands , 2017, Nature Genetics.

[5]  Hannes P. Eggertsson,et al.  Parental influence on human germline de novo mutations in 1,548 trios from Iceland , 2017, Nature.

[6]  Ryan E. Mills,et al.  The Mobile Element Locator Tool (MELT): population-scale mobile element discovery and biology , 2017, Genome research.

[7]  Stephan J Sanders,et al.  Whole genome sequencing in psychiatric disorders: the WGSPD consortium , 2017, bioRxiv.

[8]  T. Sicheritz-Pontén,et al.  Comparative performance of the BGISEQ-500 vs Illumina HiSeq2500 sequencing platforms for palaeogenomic sequencing , 2017, GigaScience.

[9]  Brent S. Pedersen,et al.  Indexcov: fast coverage quality control for whole-genome sequencing , 2017, bioRxiv.

[10]  B. Yamrom,et al.  De novo indels within introns contribute to ASD incidence , 2017, bioRxiv.

[11]  J. Sebat,et al.  Paternally inherited noncoding structural variants contribute to autism , 2017, bioRxiv.

[12]  Ryan L. Collins,et al.  Defining the diverse spectrum of inversions, complex structural variation, and chromothripsis in the morbid human genome , 2017, Genome Biology.

[13]  Joan,et al.  Prevalence and architecture of de novo mutations in developmental disorders , 2017, Nature.

[14]  Helen E. Parkinson,et al.  The new NHGRI-EBI Catalog of published genome-wide association studies (GWAS Catalog) , 2016, Nucleic Acids Res..

[15]  P. Visscher,et al.  Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects , 2016, Nature Genetics.

[16]  William J. Astle,et al.  Allelic Landscape of Human Blood Cell Trait Variation and Links , 2016 .

[17]  Edwin Cuppen,et al.  The genomic landscape of balanced cytogenetic abnormalities associated with human congenital anomalies , 2016, Nature Genetics.

[18]  Soher Balkhy,et al.  Mutations in Human Accelerated Regions Disrupt Cognition and Social Behavior , 2016, Cell.

[19]  Francesco Muntoni,et al.  Improving genetic diagnosis in Mendelian disease with transcriptome sequencing , 2016, Science Translational Medicine.

[20]  Giulio Genovese,et al.  Increased burden of ultra-rare protein-altering variants among 4,877 individuals with schizophrenia , 2016, Nature Neuroscience.

[21]  David C. Wilson,et al.  Genome-wide association study implicates immune activation of multiple integrin genes in inflammatory bowel disease , 2016, Nature Genetics.

[22]  Xiaoyu Chen,et al.  Manta: rapid detection of structural variants and indels for germline and cancer sequencing applications , 2016, Bioinform..

[23]  C. Spencer,et al.  A contribution of novel CNVs to schizophrenia from a genome-wide study of 41,321 subjects: CNV Analysis Group and the Schizophrenia Working Group of the Psychiatric Genomics Consortium , 2016, bioRxiv.

[24]  Yali Xue,et al.  BCFtools/RoH: a hidden Markov model approach for detecting autozygosity from next-generation sequencing data , 2016, Bioinform..

[25]  N. Šestan,et al.  The Cellular and Molecular Landscapes of the Developing Human Central Nervous System , 2016, Neuron.

[26]  C. Baker,et al.  Genome Sequencing of Autism-Affected Families Reveals Disruption of Putative Noncoding Regulatory DNA. , 2016, American journal of human genetics.

[27]  Mark Yandell,et al.  Wham: Identifying Structural Variants of Biological Consequence , 2015, PLoS Comput. Biol..

[28]  Michael J. Purcaro,et al.  The PsychENCODE project , 2015, Nature Neuroscience.

[29]  Harry Hemingway,et al.  Health and population effects of rare gene knockouts in adult humans with related parents , 2015, Science.

[30]  James Y. Zou Analysis of protein-coding genetic variation in 60,706 humans , 2015, Nature.

[31]  Gabor T. Marth,et al.  An integrated map of structural variation in 2,504 human genomes , 2015, Nature.

[32]  Gabor T. Marth,et al.  A global reference for human genetic variation , 2015, Nature.

[33]  Christopher S. Poultney,et al.  Insights into Autism Spectrum Disorder Genomic Architecture and Biology from 71 Risk Loci , 2015, Neuron.

[34]  Hui Yang,et al.  Genomic variant annotation and prioritization with ANNOVAR and wANNOVAR , 2015, Nature Protocols.

[35]  O. Hofmann,et al.  VarDict: a novel and versatile variant caller for next-generation sequencing in cancer research , 2016, Nucleic acids research.

[36]  Ryan L. Collins,et al.  Paired-Duplication Signatures Mark Cryptic Inversions and Other Complex Structural Variation. , 2015, American journal of human genetics.

[37]  Eric M. Morrow,et al.  A Genome-wide Association Study of Autism Using the Simons Simplex Collection: Does Reducing Phenotypic Heterogeneity in Autism Increase Genetic Homogeneity? , 2015, Biological Psychiatry.

[38]  Wei Chen,et al.  A Bayesian framework for de novo mutation calling in parents-offspring trios , 2015, Bioinform..

[39]  Alejandro Sifrim,et al.  Genetic diagnosis of developmental disorders in the DDD study: a scalable analysis of genome-wide research data , 2015, The Lancet.

[40]  Stephan J Sanders,et al.  The autism-associated chromatin modifier CHD8 regulates other autism risk genes during human neurodevelopment , 2015, Nature Communications.

[41]  Michael Q. Zhang,et al.  Integrative analysis of 111 reference human epigenomes , 2015, Nature.

[42]  Nenad Sestan,et al.  From trans to cis: transcriptional regulatory networks in neocortical development. , 2015, Trends in genetics : TIG.

[43]  S. Scherer,et al.  Whole-genome sequencing of quartet families with autism spectrum disorder , 2015, Nature Medicine.

[44]  Michael C. Schatz,et al.  The Challenge of Small-Scale Repeats for Indel Discovery , 2015, Front. Bioeng. Biotechnol..

[45]  S. Cichon,et al.  Evaluating Historical Candidate Genes for Schizophrenia , 2015, Molecular Psychiatry.

[46]  R. Handsaker,et al.  Large multi-allelic copy number variations in humans , 2015, Nature Genetics.

[47]  Boris Yamrom,et al.  The contribution of de novo coding mutations to autism spectrum disorder , 2014, Nature.

[48]  Kathryn Roeder,et al.  De novo insertions and deletions of predominantly paternal origin are associated with autism spectrum disorder. , 2014, Cell reports.

[49]  Manolis Kellis,et al.  CHD8 regulates neurodevelopmental pathways associated with autism spectrum disorder in neural progenitors , 2014, Proceedings of the National Academy of Sciences.

[50]  C. Spencer,et al.  Biological Insights From 108 Schizophrenia-Associated Genetic Loci , 2014, Nature.

[51]  Michael C. Schatz,et al.  Accurate detection of de novo and transmitted INDELs within exome-capture data using micro-assembly , 2014, bioRxiv.

[52]  Heng Li Toward better understanding of artifacts in variant calling from high-coverage samples , 2014, Bioinform..

[53]  T. Meehan,et al.  An atlas of active enhancers across human cell types and tissues , 2014, Nature.

[54]  Eric S. Lander,et al.  A polygenic burden of rare disruptive mutations in schizophrenia , 2014, Nature.

[55]  Wei Niu,et al.  Coexpression Networks Implicate Human Midfetal Deep Cortical Projection Neurons in the Pathogenesis of Autism , 2013, Cell.

[56]  Arthur Wuster,et al.  DeNovoGear: de novo indel and point mutation discovery and phasing , 2013, Nature Methods.

[57]  J. Zook,et al.  Integrating human sequence data sets provides a resource of benchmark SNP and indel genotype calls , 2013, Nature Biotechnology.

[58]  Ryan M. Layer,et al.  LUMPY: a probabilistic framework for structural variant discovery , 2012, Genome Biology.

[59]  V. Beneš,et al.  DELLY: structural variant discovery by integrated paired-end and split-read analysis , 2012, Bioinform..

[60]  Bronwen L. Aken,et al.  GENCODE: The reference human genome annotation for The ENCODE Project , 2012, Genome research.

[61]  Yong Zhang,et al.  Identifying ChIP-seq enrichment using MACS , 2012, Nature Protocols.

[62]  S. Steinberg,et al.  Rate of de novo mutations and the importance of father’s age to disease risk , 2012, Nature.

[63]  Richard M Myers,et al.  Genomic patterns of homozygosity in worldwide human populations. , 2012, American journal of human genetics.

[64]  B. Faircloth,et al.  Primer3—new capabilities and interfaces , 2012, Nucleic acids research.

[65]  Toshiro K. Ohsumi,et al.  Sequencing Chromosomal Abnormalities Reveals Neurodevelopmental Loci that Confer Risk across Diagnostic Boundaries , 2012, Cell.

[66]  Helga Thorvaldsdóttir,et al.  Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration , 2012, Briefings Bioinform..

[67]  Jesse R. Dixon,et al.  Topological Domains in Mammalian Genomes Identified by Analysis of Chromatin Interactions , 2012, Nature.

[68]  Evan T. Geller,et al.  Patterns and rates of exonic de novo mutations in autism spectrum disorders , 2012, Nature.

[69]  Michael F. Walker,et al.  De novo mutations revealed by whole-exome sequencing are strongly associated with autism , 2012, Nature.

[70]  Bradley P. Coe,et al.  Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations , 2012, Nature.

[71]  Manolis Kellis,et al.  ChromHMM: automating chromatin-state discovery and characterization , 2012, Nature Methods.

[72]  T. Mikkelsen,et al.  Rapid dissection and model-based optimization of inducible enhancers in human cells using a massively parallel reporter assay , 2012, Nature Biotechnology.

[73]  S. Hochreiter,et al.  cn.MOPS: mixture of Poissons for discovering copy number variations in next-generation sequencing data with a low false discovery rate , 2012, Nucleic acids research.

[74]  S. Salzberg,et al.  Repetitive DNA and next-generation sequencing: computational challenges and solutions , 2011, Nature Reviews Genetics.

[75]  Heng Li,et al.  A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data , 2011, Bioinform..

[76]  J. Fak,et al.  FMRP Stalls Ribosomal Translocation on mRNAs Linked to Synaptic Function and Autism , 2011, Cell.

[77]  M. Gerstein,et al.  CNVnator: an approach to discover, genotype, and characterize typical and atypical CNVs from family and population genome sequencing. , 2011, Genome research.

[78]  R. Durbin,et al.  Dindel: accurate indel calls from short-read data. , 2011, Genome research.

[79]  C. Lord,et al.  The Simons Simplex Collection: A Resource for Identification of Autism Genetic Risk Factors , 2010, Neuron.

[80]  M. DePristo,et al.  The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. , 2010, Genome research.

[81]  M. Lynch Evolution of the mutation rate. , 2010, Trends in genetics : TIG.

[82]  C. Glass,et al.  Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. , 2010, Molecular cell.

[83]  Eric S. Lander,et al.  Hi-C: A Method to Study the Three-dimensional Architecture of Genomes. , 2010, Journal of visualized experiments : JoVE.

[84]  A. Visel,et al.  ChIP-seq accurately predicts tissue-specific activity of enhancers , 2009, Nature.

[85]  J. Ioannidis Why Most Discovered True Associations Are Inflated , 2008, Epidemiology.

[86]  F. Dudbridge,et al.  Estimation of significance thresholds for genomewide association scans , 2008, Genetic epidemiology.

[87]  Manuel A. R. Ferreira,et al.  PLINK: a tool set for whole-genome association and population-based linkage analyses. , 2007, American journal of human genetics.

[88]  Inna Dubchak,et al.  VISTA Enhancer Browser—a database of tissue-specific human enhancers , 2006, Nucleic Acids Res..

[89]  D. Haussler,et al.  Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. , 2005, Genome research.

[90]  M. Daly,et al.  Genome-wide association studies for common diseases and complex traits , 2005, Nature Reviews Genetics.

[91]  Tom H. Pringle,et al.  The human genome browser at UCSC. , 2002, Genome research.

[92]  W. J. Kent,et al.  BLAT--the BLAST-like alignment tool. , 2002, Genome research.

[93]  M. Nirenberg,et al.  Sequential Translation of Trinucleotide Codons for the Initiation and Termination of Protein Synthesis , 1968, Science.

[94]  P. McGuffin,et al.  Fecundity of patients with schizophrenia, autism, bipolar disorder, depression, anorexia nervosa, or substance abuse vs their unaffected siblings. , 2013, JAMA psychiatry.

[95]  K. Pollard,et al.  Detection of nonneutral substitution rates on mammalian phylogenies. , 2010, Genome research.

[96]  Claude-Alain H. Roten,et al.  Theoretical and practical advances in genome halving , 2004 .

[97]  E. Forgy Cluster analysis of multivariate data : efficiency versus interpretability of classifications , 1965 .

[98]  Aaron R. Quinlan,et al.  BIOINFORMATICS APPLICATIONS NOTE , 2022 .

[99]  M. Croning,et al.  Characterization of the proteome, diseases and evolution of the human postsynaptic density , 2011, Nature Neuroscience.