An efficient multi-objective evolutionary algorithm with steady-state replacement model

The generic Multi-objective Evolutionary Algorithm (MOEA) aims to produce Pareto-front approximations with good convergence and diversity property. To achieve convergence, most multi-objective evolutionary algorithms today employ Pareto-ranking as the main criteria for fitness calculation. The computation of Pareto-rank in a population is time consuming, and arguably the most computationally expensive component in an iteration of the said algorithms. This paper proposes a Multi-objective Evolutionary Algorithm which avoids Pareto-ranking altogether by employing the transitivity of the domination relation. The proposed algorithm is an elitist algorithm with explicit diversity preservation procedure. It applies a measure reflecting the degree of domination between solutions in a steady-state replacement strategy to determine which individuals survive to the next iteration. Results on nine standard test functions demonstrated that the algorithm performs favorably compared to the popular NSGA-II in terms of convergence as well as diversity of the Pareto-set approximation, and is computationally more efficient.

[1]  Lishan Kang,et al.  A High Performance Multi-objective Evolutionary Algorithm Based on the Principles of Thermodynamics , 2004, PPSN.

[2]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[3]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[4]  David Corne,et al.  The Pareto archived evolution strategy: a new baseline algorithm for Pareto multiobjective optimisation , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[5]  Mikkel T. Jensen,et al.  Reducing the run-time complexity of multiobjective EAs: The NSGA-II and other algorithms , 2003, IEEE Trans. Evol. Comput..

[6]  Kalyanmoy Deb,et al.  Simulated Binary Crossover for Continuous Search Space , 1995, Complex Syst..

[7]  Marco Laumanns,et al.  SPEA2: Improving the Strength Pareto Evolutionary Algorithm For Multiobjective Optimization , 2002 .

[8]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[9]  Christine L. Mumford Simple Population Replacement Strategies for a Steady-State Multi-objective Evolutionary Algorithm , 2004, GECCO.

[10]  Marco Laumanns,et al.  A Spatial Predator-Prey Approach to Multi-objective Optimization: A Preliminary Study , 1998, PPSN.

[11]  Carlo Poloni,et al.  Hybrid GA for Multi Objective Aerodynamic Shape Optimisation , 1995 .

[12]  Peter Vamplew,et al.  The Combative Accretion Model - Multiobjective Optimisation Without Explicit Pareto Ranking , 2005, EMO.

[13]  Marco Laumanns,et al.  Combining Convergence and Diversity in Evolutionary Multiobjective Optimization , 2002, Evolutionary Computation.

[14]  Yong Liu,et al.  An Efficient Multi-objective Evolutionary Algorithm: OMOEA-II , 2005, EMO.

[15]  David E. Goldberg,et al.  A niched Pareto genetic algorithm for multiobjective optimization , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[16]  Nicola Beume,et al.  An EMO Algorithm Using the Hypervolume Measure as Selection Criterion , 2005, EMO.

[17]  Frank Kursawe,et al.  A Variant of Evolution Strategies for Vector Optimization , 1990, PPSN.

[18]  Kalyanmoy Deb,et al.  Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.

[19]  M. Kisiel-Dorohinicki,et al.  Agent-based evolutionary multiobjective optimisation , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[20]  Peter J. Fleming,et al.  Multiobjective optimization and multiple constraint handling with evolutionary algorithms. II. Application example , 1998, IEEE Trans. Syst. Man Cybern. Part A.

[21]  Martin J. Oates,et al.  PESA-II: region-based selection in evolutionary multiobjective optimization , 2001 .

[22]  Mihai Oltean,et al.  Multiobjective optimization using adaptive Pareto archived evolution strategy , 2005, 5th International Conference on Intelligent Systems Design and Applications (ISDA'05).

[23]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[24]  Peter J. Fleming,et al.  Multiobjective optimization and multiple constraint handling with evolutionary algorithms. I. A unified formulation , 1998, IEEE Trans. Syst. Man Cybern. Part A.