Subsampling Inference with K Populations and a Non‐standard Behrens–Fisher Problem

Resume  Nous passons en revue la methodologie et le developpement historique des methodes de sous-echantillonnage, et explorons en detail leur utilisation dans le cadre des problemes de tests d'hypotheses, ou ces methodes ont eteetonnamment peu prises en consideration. Nous explorons, en particulier, le cas tres general d'un modele aKechantillons faisant intervenir un parametre de grande dimension. Nous mettons en evidence le role important que joue le centrage de la loi de sous-echantillonnage, et montrons que ce centrage augmente la puissance des tests consideres. Nous montrons egalement comment les methodes de sous-echantillonnage permettent de traiter une forme non standard du probleme de Behrens-Fisher dans laquelle les populations dont on desire comparer les moyennes ne different pas seulement par leurs variances (qui peuvent eventuellement etre infinies), mais peuvent presenter des lois completement heterogenes. Notre formulation est tres generale, et s'applique meme a des observations de nature fonctionnelle. Enfin, nous developpons une theorie pour les statistiques-U permettant d'etablir, dans le cadre tres general de Kechantillons, la validite asymptotique des intervalles de confiance et des tests fondes sur le sous-echantillonnage. Summary We revisit the methodology and historical development of subsampling, and then explore in detail its use in hypothesis testing, an area which has received surprisingly modest attention. In particular, the general set-up of a possibly high-dimensional parameter with data fromKpopulations is explored. The role of centring the subsampling distribution is highlighted, and it is shown that hypothesis testing with a data-centred subsampling distribution is more powerful. In addition we demonstrate subsampling’s ability to handle a non-standard Behrens–Fisher problem, i.e., a comparison of the means of two or more populations which may possess not only different and possibly infinite variances, but may also possess different distributions. However, our formulation is general, permitting even functional data and/or statistics. Finally, we provide theory forK-sampleU-statistics that helps establish the asymptotic validity of subsampling confidence intervals and tests in this very general setting.

[1]  P. Hall,et al.  On blocking rules for the bootstrap with dependent data , 1995 .

[2]  D. Andrews,et al.  ASYMPTOTIC SIZE AND A PROBLEM WITH SUBSAMPLING AND WITH THE m OUT OF n BOOTSTRAP , 2009, Econometric Theory.

[3]  Changbao Wu,et al.  Jackknife, Bootstrap and Other Resampling Methods in Regression Analysis , 1986 .

[4]  D. Politis,et al.  Subsampling p-values , 2010 .

[5]  M. H. Quenouille NOTES ON BIAS IN ESTIMATION , 1956 .

[6]  E. Carlstein The Use of Subseries Values for Estimating the Variance of a General Statistic from a Stationary Sequence , 1986 .

[7]  Anthony C. Davison,et al.  Bootstrap Methods and Their Application , 1998 .

[8]  F. Götze,et al.  Adaptive choice of bootstrap sample sizes , 2001 .

[9]  Joseph P. Romano,et al.  K-sample Subsampling , 2008 .

[10]  Welch Bl THE GENERALIZATION OF ‘STUDENT'S’ PROBLEM WHEN SEVERAL DIFFERENT POPULATION VARLANCES ARE INVOLVED , 1947 .

[11]  J. Shao,et al.  The jackknife and bootstrap , 1996 .

[12]  David Hinkley,et al.  Bootstrap Methods: Another Look at the Jackknife , 2008 .

[13]  Joseph P. Romano,et al.  A Review of Bootstrap Confidence Intervals , 1988 .

[14]  E. Lehmann Testing Statistical Hypotheses , 1960 .

[15]  B. Efron The jackknife, the bootstrap, and other resampling plans , 1987 .

[16]  Joseph P. Romano,et al.  Large Sample Confidence Regions Based on Subsamples under Minimal Assumptions , 1994 .

[17]  J. L. Nolan Stable Distributions. Models for Heavy Tailed Data , 2001 .

[18]  Jesus Gonzalo,et al.  Subsampling inference in threshold autoregressive models , 2005 .

[19]  W. Hoeffding Probability Inequalities for sums of Bounded Random Variables , 1963 .

[20]  F. Götze,et al.  RESAMPLING FEWER THAN n OBSERVATIONS: GAINS, LOSSES, AND REMEDIES FOR LOSSES , 2012 .

[21]  Joseph P. Romano,et al.  On the uniform asymptotic validity of subsampling and the bootstrap , 2012, 1204.2762.

[22]  Michael Wolf,et al.  Balanced Control of Generalized Error Rates , 2008 .

[23]  R. Beran Prepivoting Test Statistics: A Bootstrap View of Asymptotic Refinements , 1988 .

[24]  Peter Hall,et al.  ON THE BOOTSTRAP AND TWO-SAMPLE PROBLEMS , 1988 .

[25]  D. Politis Comments on “bootstrapping time series models” , 1996 .

[26]  Michael A. Martin On the bootstrap and confidence intervals , 1989 .

[27]  Anna Mikusheva Uniform Inference in Autoregressive Models , 2007 .

[28]  Michael Wolf,et al.  Subsampling inference in cube root asymptotics with an application to Manski's maximum score estimator , 2001 .

[29]  Jon A. Wellner,et al.  Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .

[30]  Robert Tibshirani,et al.  Bootstrap Methods for Standard Errors, Confidence Intervals, and Other Measures of Statistical Accuracy , 1986 .

[31]  P. Bickel,et al.  ON THE CHOICE OF m IN THE m OUT OF n BOOTSTRAP AND CONFIDENCE BOUNDS FOR EXTREMA , 2008 .

[32]  Rupert G. Miller The jackknife-a review , 1974 .

[33]  J. Shao,et al.  A General Theory for Jackknife Variance Estimation , 1989 .

[34]  C. Klüppelberg,et al.  Modelling Extremal Events , 1997 .

[35]  Robert Tibshirani,et al.  An Introduction to the Bootstrap , 1994 .

[36]  Pu Chen,et al.  SUBSAMPLING THE JOHANSEN TEST WITH STABLE INNOVATIONS , 2010 .

[37]  P. Bickel,et al.  The bootstrap in hypothesis testing , 2001 .

[38]  Arnold J Stromberg,et al.  Subsampling , 2001, Technometrics.

[39]  Joseph P. Romano,et al.  Control of the false discovery rate under dependence using the bootstrap and subsampling , 2008 .

[40]  James G. MacKinnon,et al.  Thirty Years of Heteroskedasticity-Robust Inference , 2013 .

[41]  A. Dasgupta Asymptotic Theory of Statistics and Probability , 2008 .

[42]  In Choi,et al.  Subsampling Hypothesis Tests for Nonstationary Panels with Applications to Exchange Rates and Stock Prices , 2007 .

[43]  M. H. Quenouille Approximate Tests of Correlation in Time‐Series , 1949 .

[44]  D. Politis,et al.  Bootstrap hypothesis testing in regression models , 2005 .

[45]  J. Pfanzagl On the Behrens-Fisher problem , 1974 .

[46]  C. Mallows,et al.  Limit Distributions of Self-normalized Sums , 1973 .

[47]  In Choi,et al.  Subsampling vector autoregressive tests of linear constraints , 2005 .

[48]  W. Hoeffding A Class of Statistics with Asymptotically Normal Distribution , 1948 .

[49]  Regina Y. Liu Moving blocks jackknife and bootstrap capture weak dependence , 1992 .

[50]  Susan R. Wilson,et al.  Two guidelines for bootstrap hypothesis testing , 1991 .

[51]  P. Hall The Bootstrap and Edgeworth Expansion , 1992 .

[52]  Patrik Guggenberger,et al.  VALIDITY OF SUBSAMPLING AND “PLUG-IN ASYMPTOTIC” INFERENCE FOR PARAMETERS DEFINED BY MOMENT INEQUALITIES , 2007, Econometric Theory.

[53]  H. Künsch The Jackknife and the Bootstrap for General Stationary Observations , 1989 .

[54]  P. Saikkonen,et al.  TESTS FOR NONLINEAR COINTEGRATION , 2009, Econometric Theory.

[55]  R. Beran Simulated Power Functions , 1986 .