Superconvergence recovery technique and a posteriori error estimators

A new superconvergence recovery technique for finite element solutions is presented and discussed for one dimensional problems. By using the recovery technique a posteriori error estimators in both energy norm and maximum norm are presented for finite elements of any order. The relation between the postprocessing and residual types of energy norm error estimators has also been demonstrated.

[1]  J. J. Douglas,et al.  Galerkin approximations for the two point boundary problem using continuous, piecewise polynomial spaces , 1974 .

[2]  Mary F. Wheeler,et al.  A Galerkin Procedure for Estimating the Flux for Two-Point Boundary Value Problems , 1974 .

[3]  J. Barlow,et al.  Optimal stress locations in finite element models , 1976 .

[4]  I. Babuska,et al.  A‐posteriori error estimates for the finite element method , 1978 .

[5]  W. Rheinboldt,et al.  Error Estimates for Adaptive Finite Element Computations , 1978 .

[6]  M. Zlámal,et al.  Superconvergence of the gradient of finite element solutions , 1979 .

[7]  Ivo Babuška,et al.  A Posteriori Error Analysis of Finite Element Solutions for One-Dimensional Problems , 1981 .

[8]  Ivo Babuška,et al.  A posteriori error analysis and adaptive processes in the finite element method: Part II—adaptive mesh refinement , 1983 .

[9]  Ivo Babuška,et al.  A posteriori error analysis and adaptive processes in the finite element method: Part I—error analysis , 1983 .

[10]  O. Zienkiewicz,et al.  The hierarchical concept in finite element analysis , 1983 .

[11]  Leszek Demkowicz,et al.  On an h-type mesh-refinement strategy based on minimization of interpolation errors☆ , 1985 .

[12]  O. C. Zienkiewicz,et al.  A simple error estimator in the finite element method , 1987 .

[13]  Pekka Neittaanmäki,et al.  On superconvergence techniques , 1987 .

[14]  O. C. Zienkiewicz,et al.  A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .

[15]  J. Oden,et al.  Paradigmatic error calculations for adaptive finite element approximations of convection dominated flows , 1988 .

[16]  O. C. Zienkiewicz,et al.  Error estimation and adaptivity in flow formulation for forming problems , 1988 .

[17]  F. B. Ellerby,et al.  Numerical solutions of partial differential equations by the finite element method , by C. Johnson. Pp 278. £40 (hardback), £15 (paperback). 1988. ISBN 0-521-34514-6, 34758-0 (Cambridge University Press) , 1989, The Mathematical Gazette.

[18]  O. C. Zienkiewicz,et al.  Error estimates and convergence rates for various incompressible elements , 1989 .

[19]  O. C. Zienkiewicz,et al.  Error estimates and adaptive refinement for plate bending problems , 1989 .

[20]  J. Oden,et al.  Toward a universal h - p adaptive finite element strategy: Part 2 , 1989 .

[21]  O. Zienkiewicz,et al.  Analysis of the Zienkiewicz–Zhu a‐posteriori error estimator in the finite element method , 1989 .

[22]  Graham F. Carey,et al.  Superconvergent derivatives: A Taylor series analysis , 1989 .

[23]  J. Z. Zhu,et al.  Effective and practical h–p‐version adaptive analysis procedures for the finite element method , 1989 .