Structure detection and parameter estimation for NARX models in a unified EM framework
暂无分享,去创建一个
Sean R. Anderson | Visakan Kadirkamanathan | Tara Baldacchino | V. Kadirkamanathan | T. Baldacchino | S. Anderson
[1] James P. Reilly,et al. An EM Algorithm for Nonlinear State Estimation With Model Uncertainties , 2008, IEEE Transactions on Signal Processing.
[2] S. Roweis,et al. Learning Nonlinear Dynamical Systems Using the Expectation–Maximization Algorithm , 2001 .
[3] A. Doucet,et al. A Tutorial on Particle Filtering and Smoothing: Fifteen years later , 2008 .
[4] G. Schwarz. Estimating the Dimension of a Model , 1978 .
[5] S. Billings,et al. Orthogonal parameter estimation algorithm for non-linear stochastic systems , 1988 .
[6] G. McLachlan,et al. The EM algorithm and extensions , 1996 .
[7] I. J. Leontaritis,et al. Input-output parametric models for non-linear systems Part II: stochastic non-linear systems , 1985 .
[8] Steve A. Billings,et al. Term and variable selection for non-linear system identification , 2004 .
[9] Lennart Ljung,et al. Nonlinear black-box modeling in system identification: a unified overview , 1995, Autom..
[10] Jin-Chuan Duan,et al. A stable estimator of the information matrix under EM for dependent data , 2011, Stat. Comput..
[11] T. Louis. Finding the Observed Information Matrix When Using the EM Algorithm , 1982 .
[12] R. Bhushan Gopaluni,et al. Nonlinear system identification under missing observations: The case of unknown model structure , 2010 .
[13] David S. Stoffer,et al. Time series analysis and its applications , 2000 .
[14] L. Piroddi,et al. An identification algorithm for polynomial NARX models based on simulation error minimization , 2003 .
[15] Giorgio Battistelli,et al. Unfalsified Virtual Reference Adaptive Switching Control of Plants with Persistent Disturbances , 2008 .
[16] Alf Isaksson,et al. Identification of ARX-models subject to missing data , 1993, IEEE Trans. Autom. Control..
[17] R. Engle. Wald, likelihood ratio, and Lagrange multiplier tests in econometrics , 1984 .
[18] Neil J. Gordon,et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..
[19] Brett Ninness,et al. Robust maximum-likelihood estimation of multivariable dynamic systems , 2005, Autom..
[20] S. Billings,et al. Algorithms for minimal model structure detection in nonlinear dynamic system identification , 1997 .
[21] Thomas B. Schön,et al. Parameter Estimation for Discrete-Time Nonlinear Systems Using EM , 2008 .
[22] Kang Li,et al. A two-stage algorithm for identification of nonlinear dynamic systems , 2006, Autom..
[23] Sean R. Anderson,et al. Maximum-Likelihood Estimation of Delta-Domain Model Parameters From Noisy Output Signals , 2008, IEEE Transactions on Signal Processing.
[24] W. Newey,et al. Large sample estimation and hypothesis testing , 1986 .
[25] Thomas Bo Schön,et al. Maximum Likelihood Nonlinear System Estimation , 2006 .
[26] Lennart Ljung,et al. System Identification: Theory for the User , 1987 .
[27] R. B. Gopaluni. A particle filter approach to identification of nonlinear processes under missing observations , 2008 .
[28] S. Billings,et al. A prediction-error and stepwise-regression estimation algorithm for non-linear systems , 1986 .
[29] H. Akaike. A new look at the statistical model identification , 1974 .
[30] Bin Yu,et al. Model Selection and the Principle of Minimum Description Length , 2001 .
[31] Bart De Moor,et al. Subspace Identification for Linear Systems: Theory ― Implementation ― Applications , 2011 .
[32] Visakan Kadirkamanathan,et al. Particle filtering-based fault detection in non-linear stochastic systems , 2002, Int. J. Syst. Sci..
[33] Thomas B. Schön,et al. Particle Filter Approach to Nonlinear System Identification under Missing Observations with a Real Application , 2009 .
[34] Simon J. Godsill,et al. On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..
[35] D. Rubin,et al. Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .
[36] R. Kearney,et al. A bootstrap method for structure detection of NARMAX models , 2004 .
[37] Thomas B. Schön,et al. System identification of nonlinear state-space models , 2011, Autom..
[38] Jorma Rissanen,et al. Stochastic Complexity in Statistical Inquiry , 1989, World Scientific Series in Computer Science.
[39] Petar M. Djuric,et al. Asymptotic MAP criteria for model selection , 1998, IEEE Trans. Signal Process..
[40] W. Newey,et al. A Simple, Positive Semi-Definite, Heteroskedasticity and Autocorrelationconsistent Covariance Matrix , 1986 .
[41] R. Shumway,et al. AN APPROACH TO TIME SERIES SMOOTHING AND FORECASTING USING THE EM ALGORITHM , 1982 .
[42] Heinz Unbehauen,et al. Structure identification of nonlinear dynamic systems - A survey on input/output approaches , 1990, Autom..
[43] V. Kadirkamanathan,et al. Modelling and identification of non-linear deterministic systems in the delta-domain , 2007, Autom..
[44] New York Dover,et al. ON THE CONVERGENCE PROPERTIES OF THE EM ALGORITHM , 1983 .
[45] Christophe Andrieu,et al. Particle methods for change detection, system identification, and control , 2004, Proceedings of the IEEE.