Evolutionary optimal trajectory planning for industrial robot with payload constraints

This paper presents a new general methodology based on the evolutionary algorithms—elitist non-dominated sorting genetic algorithm (NSGA-II) and differential evolution (DE)—for optimal trajectory planning of an industrial robot manipulator (PUMA560) by considering payload constraints. The aim is to minimize a multicriterion cost function with actuator constraints, joint limits, and payload constraints by considering dynamic equations of motion. Trajectories are defined by B-spline functions. This is a nonlinear constrained optimisation problem with five objective functions, 32 constraints, and 252 variables. The multicriterion cost function is a weighted balance of transfer time, total energy involved in the motion, singularity avoidance, joint jerks, and joint accelerations. A numerical example is presented for showing the efficiency of the proposed procedure. Also, the results obtained from NSGA-II and DE techniques are compared and analysed. A comprehensive user-friendly general-purpose software package has been developed using VC++ to obtain optimal solutions using the proposed DE algorithm.

[1]  S. F. P. Saramago,et al.  OPTIMAL TRAJECTORY PLANNING OF ROBOT MANIPULATORS IN THE PRESENCE OF MOVING OBSTACLES , 2000 .

[2]  Chih-Jer Lin,et al.  Motion planning of redundant robots by perturbation method , 2004 .

[3]  Dan Simon,et al.  A trigonometric trajectory generator for robotic arms , 1993 .

[4]  A. Piazzi,et al.  An interval algorithm for minimum-jerk trajectory planning of robot manipulators , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[5]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[6]  Yury Stepanenko,et al.  Iterative dynamic programming: an approach to minimum energy trajectory planning for robotic manipulators , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[7]  Ashraf Elnagar,et al.  On optimal constrained trajectory planning in 3D environments , 2000, Robotics Auton. Syst..

[8]  Marco Ceccarelli,et al.  An optimum robot path planning with payload constraints , 2002, Robotica.

[9]  J. Bobrow,et al.  Time-Optimal Control of Robotic Manipulators Along Specified Paths , 1985 .

[10]  A. Gasparetto,et al.  A new method for smooth trajectory planning of robot manipulators , 2007 .

[11]  James E. Bobrow,et al.  Minimum-Effort Motions for Open-Chain Manipulators with Task-Dependent End-Effector Constraints , 1999, Int. J. Robotics Res..

[12]  Andrew K. C. Wong,et al.  A singularities avoidance method for the trajectory planning of redundant and nonredundant robot manipulators , 1987, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[13]  N. McKay,et al.  A dynamic programming approach to trajectory planning of robotic manipulators , 1986 .

[14]  O. V. Stryk,et al.  Optimal control of the industrial robot Manutec r3 , 1994 .

[15]  Vincent Hayward,et al.  Singularity-Robust Trajectory Generation , 2001, Int. J. Robotics Res..

[16]  A. A. Ata,et al.  Collision-free trajectory planning for manipulatiors using generalized pattern search , 2006 .

[17]  Tuna Balkan,et al.  A dynamic programming approach to optimal control of robotic manipulators , 1998 .

[18]  Yao-Chon Chen Solving robot trajectory planning problems with uniform cubic B‐splines , 1991 .

[19]  Kang G. Shin,et al.  Minimum-time control of robotic manipulators with geometric path constraints , 1985 .

[20]  Zvi Shiller,et al.  Time-Energy Optimal Control of Articulated Systems With Geometric Path Constraints , 1996 .

[21]  Atef A. Ata,et al.  Optimal Point-to-Point Trajectory Tracking of Redundant Manipulators using Generalized Pattern Search , 2005, ArXiv.

[22]  H. Lehtihet,et al.  Minimum cost trajectory planning for industrial robots , 2004 .