A posteriori error estimates in quantities of interest for the finite element heterogeneous multiscale method

We present an "a posteriori" error analysis in quantities of interest for elliptic homogenization problems discretized by the finite element heterogeneous multiscale method. The multiscale method is based on a macro-to-micro formulation, where the macroscopic physical problem is discretized in a macroscopic finite element space, and the missing macroscopic data are recovered on-the-fly using the solutions of corresponding microscopic problems. We propose a new framework that allows to follow the concept of the (single-scale) dual-weighted residual method at the macroscopic level in order to derive a posteriori error estimates in quantities of interests for multiscale problems. Local error indicators, derived in the macroscopic domain, can be used for adaptive goal-oriented mesh refinement. These error indicators rely only on available macroscopic and microscopic solutions. We further provide a detailed analysis of the data approximation error, including the quadrature errors. Numerical experiments confirm the efficiency of the adaptive method and the effectivity of our error estimates in the quantities of interest. (C) 2013 Wiley Periodicals, Inc.

[1]  Serge Prudhomme,et al.  On goal-oriented error estimation for elliptic problems: application to the control of pointwise errors , 1999 .

[2]  W. Rheinboldt,et al.  Error Estimates for Adaptive Finite Element Computations , 1978 .

[3]  Assyr Abdulle,et al.  Finite Element Heterogeneous Multiscale Methods with Near Optimal Computational Complexity , 2008, Multiscale Model. Simul..

[4]  Assyr Abdulle,et al.  A posteriori error analysis of the heterogeneous multiscale method for homogenization problems , 2009 .

[5]  Endre Süli,et al.  Adaptive finite element methods for differential equations , 2003, Lectures in mathematics.

[6]  G. Rozza,et al.  ON THE APPROXIMATION OF STABILITY FACTORS FOR GENERAL PARAMETRIZED PARTIAL DIFFERENTIAL EQUATIONS WITH A TWO-LEVEL AFFINE DECOMPOSITION , 2012 .

[7]  Alfio Quarteroni,et al.  A modular lattice boltzmann solver for GPU computing processors , 2012 .

[8]  Ricardo H. Nochetto,et al.  Convergence of Adaptive Finite Element Methods , 2002, SIAM Rev..

[9]  Assyr Abdulle,et al.  Reduced basis finite element heterogeneous multiscale method for high-order discretizations of elliptic homogenization problems , 2012, J. Comput. Phys..

[10]  M. Larson,et al.  Adaptive variational multiscale methods based on a posteriori error estimation: Energy norm estimates for elliptic problems , 2007 .

[11]  E Weinan,et al.  Finite difference heterogeneous multi-scale method for homogenization problems , 2003 .

[12]  Grégoire Allaire,et al.  The mathematical modeling of composite materials , 2002 .

[13]  Ivo Babuska,et al.  Generalized p-FEM in homogenization , 2000, Numerische Mathematik.

[14]  Assyr Abdulle,et al.  Multiscale method based on discontinuous Galerkin methods for homogenization problems , 2008 .

[15]  Antoine Gloria,et al.  Reduction of the resonance error---Part 1: Approximation of homogenized coefficients , 2011 .

[16]  P. Henning,et al.  posteriori error estimation for a heterogeneous multiscale method for monotone operators and beyond a periodic setting , 2011 .

[17]  Mark Ainsworth,et al.  Guaranteed computable bounds on quantities of interest in finite element computations , 2012 .

[18]  Assyr Abdulle,et al.  A priori and a posteriori error analysis for numerical homogenization: a unified framework , 2011 .

[19]  E Weinan,et al.  The Heterognous Multiscale Methods , 2003 .

[20]  M. Larson,et al.  Adaptive Variational Multiscale Methods Based on A Posteriori Error Estimation: Duality Techniques for Elliptic Problems , 2005 .

[21]  Josef Stoer,et al.  Numerische Mathematik 1 , 1989 .

[22]  Kunibert G. Siebert,et al.  Design of Adaptive Finite Element Software - The Finite Element Toolbox ALBERTA , 2005, Lecture Notes in Computational Science and Engineering.

[23]  A. Quarteroni,et al.  Model reduction techniques for fast blood flow simulation in parametrized geometries , 2012, International journal for numerical methods in biomedical engineering.

[24]  S.,et al.  " Goal-Oriented Error Estimation and Adaptivity for the Finite Element Method , 1999 .

[25]  Assyr Abdulle,et al.  Heterogeneous Multiscale Methods with Quadrilateral Finite Elements , 2006 .

[26]  T. Hughes Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods , 1995 .

[27]  Thomas Grätsch,et al.  Review: A posteriori error estimation techniques in practical finite element analysis , 2005 .

[28]  Mario Ohlberger,et al.  A Posteriori Error Estimates for the Heterogeneous Multiscale Finite Element Method for Elliptic Homogenization Problems , 2005, Multiscale Model. Simul..

[29]  Gianluigi Rozza,et al.  A reduced basis hybrid method for the coupling of parametrized domains represented by fluidic networks , 2012 .

[30]  Assyr Abdulle,et al.  A short and versatile finite element multiscale code for homogenization problems , 2009 .

[31]  E Weinan,et al.  The heterogeneous multiscale method* , 2012, Acta Numerica.

[32]  Assyr Abdulle,et al.  On A Priori Error Analysis of Fully Discrete Heterogeneous Multiscale FEM , 2005, Multiscale Model. Simul..

[33]  E. Giorgi,et al.  Sulla convergenza degli integrali dell''energia per operatori ellittici del secondo ordine , 1973 .

[34]  Ronald Cools,et al.  Constructing cubature formulae: the science behind the art , 1997, Acta Numerica.

[35]  E Weinan,et al.  Heterogeneous multiscale method: A general methodology for multiscale modeling , 2003 .

[36]  George Papanicolaou,et al.  A Framework for Adaptive Multiscale Methods for Elliptic Problems , 2008, Multiscale Model. Simul..

[37]  Assyr Abdulle,et al.  The finite element heterogeneous multiscale method: a computational strategy for multiscale PDEs , 2009 .

[38]  Alfio Quarteroni,et al.  Numerical Approximation of Internal Discontinuity Interface Problems , 2013, SIAM J. Sci. Comput..

[39]  Achim Nonnenmacher,et al.  Adaptive Finite Element Methods for Multiscale Partial Differential Equations , 2011 .

[40]  Ricardo H. Nochetto,et al.  A safeguarded dual weighted residual method , 2008 .

[41]  Hengguang Li,et al.  The effect of numerical integration on the finite element approximation of linear functionals , 2011, Numerische Mathematik.

[42]  Thomas Y. Hou,et al.  Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients , 1999, Math. Comput..

[43]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[44]  Assyr Abdulle Discontinuous Galerkin finite element heterogeneous multiscale method for elliptic problems with multiple scales , 2012, Math. Comput..

[45]  On a problem in relation with the values of the argument of the Riemann zeta function in the neighborhood of points where zeta is large , 2011 .

[46]  A. Abdulle ANALYSIS OF A HETEROGENEOUS MULTISCALE FEM FOR PROBLEMS IN ELASTICITY , 2006 .

[47]  Rolf Rannacher,et al.  An optimal control approach to a posteriori error estimation in finite element methods , 2001, Acta Numerica.

[48]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[49]  I. Babuska,et al.  Special finite element methods for a class of second order elliptic problems with rough coefficients , 1994 .

[50]  O. A. Ladyzhenskai︠a︡ Boundary value problems of mathematical physics , 1967 .

[51]  G. Nguetseng A general convergence result for a functional related to the theory of homogenization , 1989 .

[52]  Xiang Ma,et al.  A stochastic mixed finite element heterogeneous multiscale method for flow in porous media , 2011, J. Comput. Phys..

[53]  J. Tinsley Oden,et al.  MultiScale Modeling of Physical Phenomena: Adaptive Control of Models , 2006, SIAM J. Sci. Comput..

[54]  E. Weinan,et al.  Analysis of the heterogeneous multiscale method for elliptic homogenization problems , 2004 .

[55]  Yalchin Efendiev,et al.  Multiscale Finite Element Methods: Theory and Applications , 2009 .

[56]  Assyr Abdulle Reduced basis heterogeneous multiscale methods , 2015 .

[57]  Philippe G. Ciarlet,et al.  THE COMBINED EFFECT OF CURVED BOUNDARIES AND NUMERICAL INTEGRATION IN ISOPARAMETRIC FINITE ELEMENT METHODS , 1972 .

[58]  H. Schmid On cubature formulae with a minimal number of knots , 1978 .

[59]  Assyr Abdulle,et al.  Adaptive finite element heterogeneous multiscale method for homogenization problems , 2011 .

[60]  J. Z. Zhu,et al.  The finite element method , 1977 .

[61]  Christoph Schwab,et al.  High-Dimensional Finite Elements for Elliptic Problems with Multiple Scales , 2005, Multiscale Modeling & simulation.

[62]  Gianluigi Rozza,et al.  Numerical Simulation of Sailing Boats: Dynamics, FSI, and Shape Optimization , 2012 .

[63]  Pablo J. Blanco,et al.  A two-level time step technique for the partitioned solution of one-dimensional arterial networks , 2012 .

[64]  V. Kouznetsova,et al.  Multiscale modeling of residual stresses in isotropic conductive adhesives with nano particles , 2012 .

[65]  F. John Partial differential equations , 1967 .

[66]  I. Babuska,et al.  Generalized Finite Element Methods: Their Performance and Their Relation to Mixed Methods , 1983 .

[67]  Igor E. Shparlinski Report on global methods for combinatorial isoperimetric problems , 2005, Math. Comput..

[68]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[69]  Carsten Carstensen,et al.  P2Q2Iso2D = 2D isoparametric FEM in Matlab , 2006 .

[70]  T. Hughes,et al.  The variational multiscale method—a paradigm for computational mechanics , 1998 .

[71]  M. Giles,et al.  Adjoint methods for PDEs: a posteriori error analysis and postprocessing by duality , 2002, Acta Numerica.

[72]  J. Guermond,et al.  Theory and practice of finite elements , 2004 .

[73]  Assyr Abdulle,et al.  Heterogeneous Multiscale FEM for Diffusion Problems on Rough Surfaces , 2005, Multiscale Model. Simul..

[74]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[75]  D. Braess Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics , 1995 .

[76]  V. Zhikov,et al.  Homogenization of Differential Operators and Integral Functionals , 1994 .

[77]  G. Gustafson,et al.  Boundary Value Problems of Mathematical Physics , 1998 .

[78]  E. Vanden-Eijnden,et al.  The Heterogeneous Multiscale Method: A Review , 2007 .

[79]  I. Babuska,et al.  The finite element method and its reliability , 2001 .