A gellan-based fluid gel carrier to enhance topical spray delivery.

[1]  L. Grover,et al.  Structuring of Hydrogels across Multiple Length Scales for Biomedical Applications , 2018, Advanced materials.

[2]  L. Grover,et al.  Advances in keratinocyte delivery in burn wound care , 2018, Advanced drug delivery reviews.

[3]  Arif Z. Nelson,et al.  Design of yield-stress fluids: a rheology-to-structure inverse problem. , 2017, Soft matter.

[4]  Simon W. Jones,et al.  Geometric confinement is required for recovery and maintenance of chondrocyte phenotype in alginate , 2017, APL bioengineering.

[5]  S. Jeffery,et al.  Successful application of keratinocyte suspension using autologous fibrin spray. , 2017, Burns : journal of the International Society for Burn Injuries.

[6]  T. Ihalainen,et al.  Bioamine-crosslinked gellan gum hydrogel for neural tissue engineering , 2017, Biomedical materials.

[7]  J. Gerlach,et al.  Calculations for reproducible autologous skin cell-spray grafting. , 2016, Burns : journal of the International Society for Burn Injuries.

[8]  W. Clint Hoffmann,et al.  Assessing a novel smartphone application - SnapCard, compared to five imaging systems to quantify droplet deposition on artificial collectors , 2016, Comput. Electron. Agric..

[9]  G G Wallace,et al.  Tissue engineering with gellan gum. , 2016, Biomaterials science.

[10]  M. Longaker,et al.  Cutaneous Scarring: Basic Science, Current Treatments, and Future Directions. , 2016, Advances in wound care.

[11]  Alan M. Smith,et al.  Controlling the rheology of gellan gum hydrogels in cell culture conditions. , 2016, International journal of biological macromolecules.

[12]  D. Lohse,et al.  Optimizing cell viability in droplet-based cell deposition , 2015, Scientific Reports.

[13]  C. Nansen,et al.  Optimizing pesticide spray coverage using a novel web and smartphone tool, SnapCard , 2015, Agronomy for Sustainable Development.

[14]  R. Moakes,et al.  Preparation and characterisation of whey protein fluid gels: The effects of shear and thermal history , 2015 .

[15]  R. Moakes,et al.  Designing biopolymer fluid gels: A microstructural approach , 2014 .

[16]  Alessandro Sannino,et al.  Polymeric hydrogels for burn wound care: Advanced skin wound dressings and regenerative templates , 2014, Burns & Trauma.

[17]  P. Coussot,et al.  Yield stress fluid flows: A review of experimental data , 2014 .

[18]  F. Bernard,et al.  Epidermal Healing in Burns: Autologous Keratinocyte Transplantation as a Standard Procedure: Update and Perspective , 2014, Plastic and reconstructive surgery. Global open.

[19]  A. Allouni,et al.  Spray-on-skin cells in burns: a common practice with no agreed protocol. , 2013, Burns : journal of the International Society for Burn Injuries.

[20]  I. Norton,et al.  Kappa carrageenan fluid gel material properties. Part 2: Tribology , 2013 .

[21]  R. Reis,et al.  Biocompatibility Evaluation of Ionic‐ and Photo‐Crosslinked Methacrylated Gellan Gum Hydrogels: In Vitro and In Vivo Study , 2013, Advanced healthcare materials.

[22]  Gordon G Wallace,et al.  Bio-ink for on-demand printing of living cells. , 2013, Biomaterials science.

[23]  I. Norton,et al.  Understanding fluid gel formation and properties , 2012 .

[24]  Ming-Wei Lee,et al.  Photocrosslinkable gellan gum film as an anti-adhesion barrier. , 2012, Carbohydrate polymers.

[25]  E. Morris,et al.  Gelation of gellan – A review , 2012 .

[26]  W. S. Rasband,et al.  ImageJ: Image processing and analysis in Java , 2012 .

[27]  L. Gloe,et al.  Polymer Gel Rheology and Adhesion , 2012 .

[28]  R. L. Reis,et al.  Gellan gum‐based hydrogels for intervertebral disc tissue‐engineering applications , 2011, Journal of tissue engineering and regenerative medicine.

[29]  Ali Khademhosseini,et al.  Modified Gellan Gum hydrogels with tunable physical and mechanical properties. , 2010, Biomaterials.

[30]  M. Gomes,et al.  Injectable gellan gum hydrogels with autologous cells for the treatment of rabbit articular cartilage defects , 2010, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[31]  I. Norton,et al.  Kinetic study of fluid gel formation and viscoelastic response with kappa-carrageenan , 2009 .

[32]  F. Huss,et al.  Transplantation of cultured human keratinocytes in single cell suspension: a comparative in vitro study of different application techniques. , 2008, Burns : journal of the International Society for Burn Injuries.

[33]  W. Hennink,et al.  Hydrogels as extracellular matrices for skeletal tissue engineering: state-of-the-art and novel application in organ printing. , 2007, Tissue engineering.

[34]  J. Goodrich,et al.  Beating the heat: A translation factor and an RNA mobilize the heat shock transcription factor HSF1. , 2006, Molecular cell.

[35]  K. Anusavice,et al.  Mammalian cell delivery via aerosol deposition. , 2005, Journal of biomedical materials research. Part B, Applied biomaterials.

[36]  J. Cooper-White,et al.  Strong through to weak ‘sheared’ gels , 2004 .

[37]  S. Adams,et al.  Influence of particle modulus on the rheological properties of agar microgel suspensions , 2004 .

[38]  D L Chester,et al.  A review of keratinocyte delivery to the wound bed. , 2004, The Journal of burn care & rehabilitation.

[39]  L. Nicolais,et al.  Hyaluronic-acid-based semi-interpenetrating materials , 2004, Journal of biomaterials science. Polymer edition.

[40]  S. E. James,et al.  A comparison of keratinocyte cell sprays with and without fibrin glue. , 2003, Burns : journal of the International Society for Burn Injuries.

[41]  F. A. Navarro,et al.  Sprayed keratinocyte suspensions accelerate epidermal coverage in a porcine microwound model. , 2000, The Journal of burn care & rehabilitation.

[42]  I. Norton,et al.  A molecular model for the formation and properties of fluid gels. , 1999, International journal of biological macromolecules.

[43]  P. Mills,et al.  RHEOLOGY OF CONCENTRATED SUSPENSIONS OF VISCOELASTIC PARTICLES , 1999 .

[44]  Howard A. Barnes,et al.  The yield stress—a review or ‘παντα ρει’—everything flows? , 1999 .

[45]  G. R. Sanderson,et al.  Gellan gum fluid gels , 1995 .

[46]  Dongqing Li,et al.  EQUATION OF STATE FOR INTERFACIAL TENSIONS OF SOLID-LIQUID SYSTEMS , 1992 .

[47]  K. Nishinari,et al.  Effect of monovalent and divalent cations on the rheological properties of gellan gels , 1991 .

[48]  A. B. Metzner Rheology of Suspensions in Polymeric Liquids , 1985 .

[49]  A. M. Kholoussy,et al.  Central peripheral temperature gradient. Its value and limitations in the management of critically iii surgical patients. , 1980, American journal of surgery.

[50]  B. Ibsen Treatment of shock with vasodilators measuring skin temperature on the big toe. Ten years' experience in 150 cases. , 1967, Diseases of the chest.

[51]  L. Ambrosio,et al.  Structure-Property Relationships in Hydrogels , 2009 .

[52]  K. Nijenhuis Thermoreversible Networks: Viscoelastic Properties and Structure of Gels , 1997 .

[53]  S. Ross‐Murphy Rheological characterization of polymer gels and networks , 1994 .

[54]  Q. D. Nguyen,et al.  Measuring the Flow Properties of Yield Stress Fluids , 1992 .

[55]  O. Smidsrod,et al.  Gelation of gellan gum , 1987 .