Nanoplasmonics of prime number arrays.

In this paper, we investigate the plasmonic near-field localization and the far-field scattering properties of non-periodic arrays of Ag nanoparticles generated by prime number sequences in two spatial dimensions. In particular, we demonstrate that the engineering of plasmonic arrays with large spectral flatness and particle density is necessary to achieve a high density of electromagnetic hot spots over a broader frequency range and a larger area compared to strongly coupled periodic and quasi-periodic structures. Finally, we study the far-field scattering properties of prime number arrays illuminated by plane waves and we discuss their angular scattering properties. The study of prime number arrays of metal nanoparticles provides a novel strategy to achieve broadband enhancement and localization of plasmonic fields for the engineering of nanoscale nano-antenna arrays and active plasmonic structures.

[1]  Luca Dal Negro,et al.  The role of nanoparticle shapes and deterministic aperiodicity for the design of nanoplasmonic arrays. , 2009, Optics express.

[2]  Luca Dal Negro,et al.  Deterministic aperiodic arrays of metal nanoparticles for surface-enhanced Raman scattering (SERS). , 2009, Optics express.

[3]  Giovanni Miano,et al.  Role of aperiodic order in the spectral, localization, and scaling properties of plasmon modes for the design of nanoparticle arrays , 2009 .

[4]  Luca Dal Negro,et al.  Photonic-plasmonic scattering resonances in deterministic aperiodic structures. , 2008, Nano letters.

[5]  N. Engheta,et al.  Hertzian plasmonic nanodimer as an efficient optical nanoantenna , 2008, 0807.1783.

[6]  Ning-Ning Feng,et al.  Electromagnetic coupling and plasmon localization in deterministic aperiodic arrays , 2008 .

[7]  Luca Dal Negro,et al.  Quasi-periodic distribution of plasmon modes in two-dimensional Fibonacci arrays of metal nanoparticles. , 2008, Optics express.

[8]  Steven J. Miller,et al.  An Invitation to Modern Number Theory , 2020 .

[9]  L. Dal Negro,et al.  Spectral gaps and mode localization in Fibonacci chains of metal nanoparticles. , 2007, Optics express.

[10]  Lukas Novotny,et al.  Effective wavelength scaling for optical antennas. , 2007, Physical review letters.

[11]  Ajay Nahata,et al.  Transmission resonances through aperiodic arrays of subwavelength apertures , 2007, Nature.

[12]  B. Hecht,et al.  Principles of nano-optics , 2006 .

[13]  A. Lacis,et al.  Multiple Scattering of Light by Particles: Radiative Transfer and Coherent Backscattering , 2006 .

[14]  Enrique Maciá,et al.  The role of aperiodic order in science and technology , 2006 .

[15]  Michael C. Sullivan Symbolic Dynamics and its Applications , 2005 .

[16]  L. Kroon,et al.  Localization-delocalization in aperiodic systems , 2002 .

[17]  C. Janot,et al.  Quasicrystals: A Primer , 1992 .

[18]  Johansson,et al.  Localization of electrons and electromagnetic waves in a deterministic aperiodic system. , 1992, Physical review. B, Condensed matter.

[19]  Przemyslaw Prusinkiewicz,et al.  The Algorithmic Beauty of Plants , 1990, The Virtual Laboratory.

[20]  James D. Johnston,et al.  Transform coding of audio signals using perceptual noise criteria , 1988, IEEE J. Sel. Areas Commun..

[21]  M. Queffélec Substitution dynamical systems, spectral analysis , 1987 .

[22]  Manfred R. Schroeder A simple function ... , 1982 .

[23]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[24]  M. L. Stein,et al.  A VISUAL DISPLAY OF SOME PROPERTIES OF THE DISTRIBUTION OF PRIMES , 1964 .

[25]  E. T. An Introduction to the Theory of Numbers , 1946, Nature.