A photosystem I monolayer with anisotropic electron flow enables Z-scheme like photosynthetic water splitting

An oriented photosystem I monolayer with minimised short-circuiting provides anisotropic electron flow, further coupling to a hydrogenase for realising light-induced H2 evolution.

[1]  W. Schuhmann,et al.  Light Induced H2 Evolution from a Biophotocathode Based on Photosystem 1--Pt Nanoparticles Complexes Integrated in Solvated Redox Polymers Films. , 2015, The journal of physical chemistry. B.

[2]  N. Plumeré,et al.  A kinetic model for redox-active film based biophotoelectrodes† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c8fd00168e , 2019, Faraday discussions.

[3]  W. Schuhmann,et al.  Redox hydrogels with adjusted redox potential for improved efficiency in Z-scheme inspired biophotovoltaic cells. , 2014, Physical chemistry chemical physics : PCCP.

[4]  D. Bryant,et al.  Solar hydrogen-producing bionanodevice outperforms natural photosynthesis , 2011, Proceedings of the National Academy of Sciences.

[5]  G. Rea,et al.  Photosynthesis at the forefront of a sustainable life , 2014, Front. Chem..

[6]  D. Bryant,et al.  Wiring photosystem I for direct solar hydrogen production. , 2010, Biochemistry.

[7]  N. Lewis,et al.  Powering the planet: Chemical challenges in solar energy utilization , 2006, Proceedings of the National Academy of Sciences.

[8]  H. Makita,et al.  Modeling electron transfer in photosystem I. , 2016, Biochimica et biophysica acta.

[9]  R. Chiechi,et al.  Orientation and Incorporation of Photosystem I in Bioelectronics Devices Enabled by Phage Display , 2017, Advanced science.

[10]  P. Fromme,et al.  Structure of photosystem I. , 2001, Biochimica et biophysica acta.

[11]  D. Bryant,et al.  Photosystem I/molecular wire/metal nanoparticle bioconjugates for the photocatalytic production of H2. , 2008, Journal of the American Chemical Society.

[12]  W. Schuhmann,et al.  High-Resolution Analysis of Photoanodes for Water Splitting by Means of Scanning Photoelectrochemical Microscopy. , 2017, Analytical chemistry.

[13]  Thomas Alured Faunce Does the world need a global project on artificial photosynthesis? , 2015, Interface Focus.

[14]  Jingjing Xu,et al.  Photosynthetic reaction center functionalized nano-composite films: effective strategies for probing and exploiting the photo-induced electron transfer of photosensitive membrane protein. , 2007, Biosensors & bioelectronics.

[15]  J. Fei,et al.  Interfacial Assembly of Photosystem II with Conducting Polymer Films toward Enhanced Photo‐Bioelectrochemical Cells , 2017 .

[16]  M. Dresselhaus,et al.  Alternative energy technologies , 2001, Nature.

[17]  J. Barth,et al.  Photocurrent of a single photosynthetic protein. , 2012, Nature nanotechnology.

[18]  Peter N. Ciesielski,et al.  Kinetic model of the photocatalytic effect of a Photosystem I monolayer on a planar electrode surface. , 2011, The journal of physical chemistry. A.

[19]  W. Schuhmann,et al.  Light-induced formation of partially reduced oxygen species limits the lifetime of photosystem 1-based biocathodes , 2018, Nature Communications.

[20]  D. Mukherjee,et al.  Microenvironment alterations enhance photocurrents from photosystem I confined in supported lipid bilayers , 2018 .

[21]  Ross D. Milton,et al.  Wiring of Photosystem I and Hydrogenase on an Electrode for Photoelectrochemical H2 Production by using Redox Polymers for Relatively Positive Onset Potential , 2017 .

[22]  I. Willner,et al.  Photo‐bioelectrochemical Cells for Energy Conversion, Sensing, and Optoelectronic Applications , 2014 .

[23]  K. Vincent,et al.  Wiring an [FeFe]-hydrogenase with photosystem I for light-induced hydrogen production. , 2010, Biochemistry.

[24]  P. Dutton,et al.  Langmuir-Blodgett monolayer films of bacterial photosynthetic membranes and isolated reaction centers: preparation, spectrophotometric and electrochemical characterization. , 1991, Biochimica et biophysica acta.

[25]  J. Miyake,et al.  Langmuir-Blodgett films of reaction centers of Rhodopseudomonas viridis : photoelectric characteristics , 1992 .

[26]  N. Mano,et al.  Introducing Pseudocapacitive Bioelectrodes into a Biofuel Cell/Biosupercapacitor Hybrid Device for Optimized Open Circuit Voltage , 2019, ChemElectroChem.

[27]  M. Rögner,et al.  Light-mediated hydrogen generation in Photosystem I: attachment of a naphthoquinone-molecular wire-Pt nanoparticle to the A1A and A1B sites. , 2014, Biochemistry.

[28]  D. Cliffel,et al.  Photosystem I in Langmuir-Blodgett and Langmuir-Schaefer monolayers. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[29]  C. Nicolini,et al.  Langmuir-Blodgett films of photosensitive proteins. , 1996, Journal of photochemistry and photobiology. B, Biology.

[30]  D. Cliffel,et al.  Mediated approaches to Photosystem I-based biophotovoltaics , 2017 .

[31]  O. Lenz,et al.  Photosynthetic hydrogen production by a hybrid complex of photosystem I and [NiFe]-hydrogenase. , 2009, ACS nano.

[32]  David E Cliffel,et al.  Rapid assembly of photosystem I monolayers on gold electrodes. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[33]  Patrick O. Saboe,et al.  Biomimetic wiring and stabilization of photosynthetic membrane proteins with block copolymer interfaces , 2016 .

[34]  M. Rögner,et al.  Photosynthesis as a power supply for (bio-)hydrogen production. , 2006, Trends in plant science.

[35]  W. Schuhmann,et al.  The Open Circuit Voltage in Biofuel Cells: Nernstian Shift in Pseudocapacitive Electrodes. , 2018, Angewandte Chemie.

[36]  E. Greenbaum,et al.  Nanoscale Photosynthesis: Photocatalytic Production of Hydrogen by Platinized Photosystem I Reaction Centers¶ , 2001, Photochemistry and photobiology.

[37]  N. Plumeré,et al.  Biophotoelectrochemistry of Photosynthetic Proteins. , 2016, Advances in biochemical engineering/biotechnology.

[38]  W. Schuhmann,et al.  Photocurrent generation by photosystem 1 integrated in crosslinked redox hydrogels , 2011 .

[39]  F. Lisdat,et al.  Advanced unidirectional photocurrent generation via cytochrome c as reaction partner for directed assembly of photosystem I. , 2014, Physical chemistry chemical physics : PCCP.

[40]  W. Schuhmann,et al.  A novel versatile microbiosensor for local hydrogen detection by means of scanning photoelectrochemical microscopy. , 2017, Biosensors & bioelectronics.

[41]  W. Schuhmann,et al.  Combination of A Photosystem 1-Based Photocathode and a Photosystem 2-Based Photoanode to a Z-Scheme Mimic for Biophotovoltaic Applications** , 2013, Angewandte Chemie.

[42]  Peidong Yang,et al.  Interfacing nature’s catalytic machinery with synthetic materials for semi-artificial photosynthesis , 2018, Nature Nanotechnology.

[43]  W. Schuhmann,et al.  Engineered electron-transfer chain in photosystem 1 based photocathodes outperforms electron-transfer rates in natural photosynthesis. , 2014, Chemistry.

[44]  O. Lenz,et al.  Light-driven Hydrogen Production by a Hybrid Complex of a [NiFe]-Hydrogenase and the Cyanobacterial Photosystem I , 2006, Photochemistry and photobiology.

[45]  W. Schuhmann,et al.  Powder Catalyst Fixation for Post-Electrolysis Structural Characterization of NiFe Layered Double Hydroxide Based Oxygen Evolution Reaction Electrocatalysts. , 2017, Angewandte Chemie.

[46]  C. Nakamura,et al.  Biomolecular device for photoinduced hydrogen production , 2002 .

[47]  R. Frese,et al.  Photosynthetic reaction center-based biophotovoltaics , 2017 .

[48]  K. Brettel,et al.  Electron transfer and arrangement of the redox cofactors in photosystem I , 1997 .

[49]  T. Aartsma,et al.  Photosynthetic protein complexes as bio-photovoltaic building blocks retaining a high internal quantum efficiency. , 2014, Biomacromolecules.

[50]  P. Frymier,et al.  Self-organized photosynthetic nanoparticle for cell-free hydrogen production. , 2010, Nature nanotechnology.

[51]  B. Bruce,et al.  Growing green electricity: progress and strategies for use of photosystem I for sustainable photovoltaic energy conversion. , 2014, Biochimica et biophysica acta.

[52]  Patrick O. Saboe,et al.  Two‐Dimensional Protein Crystals for Solar Energy Conversion , 2014, Advanced materials.

[53]  P. Matias,et al.  The direct role of selenocysteine in [NiFeSe] hydrogenase maturation and catalysis. , 2017, Nature chemical biology.

[54]  I. Willner,et al.  Photosystem I (PSI)/Photosystem II (PSII)-based photo-bioelectrochemical cells revealing directional generation of photocurrents. , 2013, Small.

[55]  A. Ben-Shem,et al.  The complex architecture of oxygenic photosynthesis , 2004, Nature Reviews Molecular Cell Biology.

[56]  J. Barber Photosynthetic energy conversion: natural and artificial. , 2009, Chemical Society reviews.

[57]  David E Cliffel,et al.  Enhanced Photocurrents of Photosystem I Films on p‐Doped Silicon , 2012, Advanced materials.

[58]  A. Zouni,et al.  Exploiting new ways for a more efficient orientation and wiring of PSI to electrodes: A fullerene C70 approach , 2019, Electrochimica Acta.

[59]  W. Schuhmann,et al.  Protection and Reactivation of the [NiFeSe] Hydrogenase from Desulfovibrio vulgaris Hildenborough under Oxidative Conditions , 2017, ACS energy letters.

[60]  Erwin Reisner,et al.  Protein film photoelectrochemistry of the water oxidation enzyme photosystem II. , 2014, Chemical Society reviews.

[61]  Nikolai Lebedev,et al.  Integration of Photosynthetic Protein Molecular Complexes in Solid-State Electronic Devices , 2004 .

[62]  W. Schuhmann,et al.  Rational wiring of photosystem II to hierarchical indium tin oxide electrodes using redox polymers , 2016 .

[63]  W. Schuhmann,et al.  Wiring photosynthetic enzymes to electrodes , 2011 .

[64]  N. Dimitrijević,et al.  Photocatalytic Hydrogen Production from Noncovalent Biohybrid Photosystem I/Pt Nanoparticle Complexes , 2011 .

[65]  F. Lisdat,et al.  High photocurrent generation by photosystem I on artificial interfaces composed of π-system-modified graphene , 2015 .

[66]  W. Schuhmann,et al.  Interrogation of a PS1-Based Photocathode by Means of Scanning Photoelectrochemical Microscopy. , 2017, Small.

[67]  J. Miyake,et al.  Control of protein orientation in molecular photoelectric devices using Langmuir—Blodgett films of photosynthetic reaction centers from Rhodopseudomonas viridis , 1994 .

[68]  T. Faunce,et al.  Energy and Environment Policy Case for a Global Project on Artificial Photosynthesis , 2013 .

[69]  Sascha Ott,et al.  In vitro hydrogen production--using energy from the sun. , 2011, Physical chemistry chemical physics : PCCP.

[70]  W Leibl,et al.  Electron transfer in photosystem I. , 2001, Biochimica et biophysica acta.