Triptycene-based copolyimides with tailored backbone rigidity for enhanced gas transport

[1]  R. Guo,et al.  Structure Manipulation in Triptycene-Based Polyimides through Main Chain Geometry Variation and Its Effect on Gas Transport Properties , 2017 .

[2]  C. Doherty,et al.  Analysis of governing factors controlling gas transport through fresh and aged triptycene-based polyimide films , 2017 .

[3]  C. Doherty,et al.  Molecular origins of fast and selective gas transport in pentiptycene-containing polyimide membranes and their physical aging behavior , 2016 .

[4]  C. Doherty,et al.  Finely Tuning the Free Volume Architecture in Iptycene-Containing Polyimides for Highly Selective and Fast Hydrogen Transport , 2016 .

[5]  W. Zhou,et al.  Metal-Organic Frameworks as Platforms for Functional Materials. , 2016, Accounts of chemical research.

[6]  J. Lai,et al.  Liberation of small molecules in polyimide membrane formation: An effect on gas separation properties , 2016 .

[7]  B. Freeman,et al.  Pentiptycene-based polyimides with hierarchically controlled molecular cavity architecture for efficient membrane gas separation , 2015 .

[8]  Y. Lee,et al.  Rigid and microporous polymers for gas separation membranes , 2015 .

[9]  I. Pinnau,et al.  Effects of hydroxyl-functionalization and sub-Tg thermal annealing on high pressure pure- and mixed-gas CO2/CH4 separation by polyimide membranes based on 6FDA and triptycene-containing dianhydrides , 2015 .

[10]  I. Pinnau,et al.  Energy‐Efficient Hydrogen Separation by AB‐Type Ladder‐Polymer Molecular Sieves , 2014, Advanced materials.

[11]  B. Freeman,et al.  Synthesis and characterization of triptycene-based polyimides with tunable high fractional free volume for gas separation membranes , 2014 .

[12]  I. Pinnau,et al.  Rational Design of Intrinsically Ultramicroporous Polyimides Containing Bridgehead-Substituted Triptycene for Highly Selective and Permeable Gas Separation Membranes , 2014 .

[13]  I. Pinnau,et al.  Ultra‐Microporous Triptycene‐based Polyimide Membranes for High‐Performance Gas Separation , 2014, Advanced materials.

[14]  Aaron W Thornton,et al.  Ending aging in super glassy polymer membranes. , 2014, Angewandte Chemie.

[15]  B. Freeman,et al.  Influence of Diffusivity and Sorption on Helium and Hydrogen Separations in Hydrocarbon, Silicon, and Fluorocarbon-Based Polymers , 2014 .

[16]  B. Freeman,et al.  Influence of polyimide precursor synthesis route and ortho-position functional group on thermally rearranged (TR) polymer properties: Conversion and free volume , 2014 .

[17]  Gabriele Clarizia,et al.  Triptycene Induced Enhancement of Membrane Gas Selectivity for Microporous Tröger's Base Polymers , 2014, Advanced materials.

[18]  Hongchao Mao,et al.  Synthesis, characterization, and gas transport properties of novel iptycene-based poly[bis(benzimidazobenzisoquinolinones)] , 2014 .

[19]  B. Freeman,et al.  Energy-efficient polymeric gas separation membranes for a sustainable future: A review , 2013 .

[20]  H. Park,et al.  High performance polyimide with high internal free volume elements. , 2011, Macromolecular rapid communications.

[21]  P. Budd,et al.  Highly permeable polymers for gas separation membranes , 2010 .

[22]  Enrico Drioli,et al.  Membrane Gas Separation: A Review/State of the Art , 2009 .

[23]  Hong-Cai Zhou,et al.  Selective gas adsorption and separation in metal-organic frameworks. , 2009, Chemical Society reviews.

[24]  T. Swager Iptycenes in the design of high performance polymers. , 2008, Accounts of chemical research.

[25]  L. Robeson,et al.  The upper bound revisited , 2008 .

[26]  J. Fried Molecular Simulation of Gas and Vapor Transport in Highly Permeable Polymers , 2006 .

[27]  B. Freeman,et al.  Transport of Gases and Vapors in Glassy and Rubbery Polymers , 2006 .

[28]  E. Thomas,et al.  Minimization of Internal Molecular Free Volume: A Mechanism for the Simultaneous Enhancement of Polymer Stiffness, Strength, and Ductility , 2006 .

[29]  P. Budd,et al.  Free volume and intrinsic microporosity in polymers , 2005 .

[30]  Mark E. Davis Ordered porous materials for emerging applications , 2002, Nature.

[31]  Douglas A. Loy,et al.  Tailored Porous Materials , 1999 .

[32]  Donald R Paul,et al.  Correlation and prediction of gas permeability in glassy polymer membrane materials via a modified free volume based group contribution method , 1997 .

[33]  J. G. Wijmans,et al.  The solution-diffusion model: a review , 1995 .

[34]  D. R. Paul,et al.  Gas Transport Properties of Polyarylates: Substituent Size and Symmetry Effects , 1995 .

[35]  A. Fick On liquid diffusion , 1995 .

[36]  H. Kita,et al.  Sorption of carbon dioxide in fluorinated poyimides , 1993 .

[37]  L. Robeson,et al.  Correlation of separation factor versus permeability for polymeric membranes , 1991 .

[38]  L. Struik,et al.  Physical aging in plastics and other glassy materials , 1977 .

[39]  D. H. Everett,et al.  Manual of Symbols and Terminology for Physicochemical Quantities and Units, Appendix II: Definitions, Terminology and Symbols in Colloid and Surface Chemistry , 1972 .

[40]  A. Bondi van der Waals Volumes and Radii , 1964 .

[41]  David Turnbull,et al.  Molecular Transport in Liquids and Glasses , 1959 .

[42]  Saul G. Cohen,et al.  Triptycene1 (9,10-o-Benzenoanthracene) , 1942 .

[43]  T. Graham XI. On the Law of the Diffusion of Gases , 1833, Transactions of the Royal Society of Edinburgh.

[44]  D. L. Ward,et al.  Tritriptycene - A D(3h) C(62) hydrocarbon with three U-shaped cavities , 1986 .