A new eight‐node quadrilateral shear‐bending plate finite element

A new Reissner-Mindlin plate finite element for the very thin and thick plates without locking and spurious zero-energy modes is presented. The element has very good convergence characteristics both for thin and thick plates, is hardly insensitive to mesh distortions, and passes the patch tests. The formulation of the element is derived from a displacement variational principle and some general criteria to compute inconsistent transverse shear strains. These criteria have been applied with success to four- and eight-node quadrilateral plate finite elements and could be applied to construct triangular elements

[1]  Wing Kam Liu,et al.  Stress projection for membrane and shear locking in shell finite elements , 1985 .

[2]  E. Reissner,et al.  Reflections on the Theory of Elastic Plates , 1985 .

[3]  M. Touratier,et al.  An efficient standard plate theory , 1991 .

[4]  Eduardo N. Dvorkin,et al.  A formulation of general shell elements—the use of mixed interpolation of tensorial components† , 1986 .

[5]  J. Reddy A Simple Higher-Order Theory for Laminated Composite Plates , 1984 .

[6]  H. Hencky,et al.  Über die Berücksichtigung der Schubverzerrung in ebenen Platten , 1947 .

[7]  R. Cook,et al.  Concepts and Applications of Finite Element Analysis , 1974 .

[8]  O. C. Zienkiewicz,et al.  Plate bending elements with discrete constraints: New triangular elements , 1990 .

[9]  H. Stolarski,et al.  Assumed strain formulation for triangular C0 plate elements based on a weak form of the Kirchhoff constraints , 1989 .

[10]  Tarun Kant,et al.  Mindlin plate analysis by segmentation method , 1983 .

[11]  On a definition of the assumed shear strains in formulation of the Co plate elements , 1989 .

[12]  Thomas J. R. Hughes,et al.  An improved treatment of transverse shear in the mindlin-type four-node quadrilateral element , 1983 .

[13]  Atef F. Saleeb,et al.  An efficient quadrilateral element for plate bending analysis , 1987 .

[14]  P. Pinsky,et al.  An assumed covariant strain based 9‐node shell element , 1987 .

[15]  J. Donea,et al.  A modified representation of transverse shear in C 0 quadrilateral plate elements , 1987 .

[16]  O. C. Zienkiewicz,et al.  Reduced integration technique in general analysis of plates and shells , 1971 .

[17]  O. C. Zienkiewicz,et al.  A robust triangular plate bending element of the Reissner–Mindlin type , 1988 .

[18]  A. K. Rao,et al.  Flexure of Thick Rectangular Plates , 1973 .

[19]  T. Hughes,et al.  Finite Elements Based Upon Mindlin Plate Theory With Particular Reference to the Four-Node Bilinear Isoparametric Element , 1981 .

[20]  E. Hinton,et al.  A nine node Lagrangian Mindlin plate element with enhanced shear interpolation , 1984 .

[21]  Klaus-Jürgen Bathe,et al.  A study of three‐node triangular plate bending elements , 1980 .

[22]  E. Hinton,et al.  A family of quadrilateral Mindlin plate elements with substitute shear strain fields , 1986 .

[23]  Barna A. Szabó,et al.  Hierarchic plate and shell models based on p-extension , 1988 .

[24]  M. Crisfield A quadratic mindlin element using shear constraints , 1984 .

[25]  P. Lardeur,et al.  A discrete shear triangular nine D.O.F. element for the analysis of thick to very thin plates , 1989 .

[26]  J. Z. Zhu,et al.  The finite element method , 1977 .

[27]  K. Bathe,et al.  A four‐node plate bending element based on Mindlin/Reissner plate theory and a mixed interpolation , 1985 .

[28]  K. Park,et al.  A Curved C0 Shell Element Based on Assumed Natural-Coordinate Strains , 1986 .

[29]  Gangan Prathap,et al.  Field‐ and edge‐consistency synthesis of A 4‐noded quadrilateral plate bending element , 1988 .

[30]  J. N. Reddy,et al.  Applied Functional Analysis and Variational Methods in Engineering , 1986 .