New bounds on the size of the minimum feedback vertex set in meshes and butterflies

Given a graph G = (V;E), the minimum feedback vertex set S is a subset of vertices of minimum size, whose removal induces an acyclic subgraph G0 = (VnS;E 0). The problem of finding S is NP–complete in general graphs, although polynomial time solutions exist for particular classes of graphs. this paper we present upper and lower bounds on the size of the minimum feedback vertex set in meshes and butterflies improving results of Luccio [10].

[1]  E T. Leighton,et al.  Introduction to parallel algorithms and architectures , 1991 .

[2]  Piotr Berman,et al.  A 2-Approximation Algorithm for the Undirected Feedback Vertex Set Problem , 1999, SIAM J. Discret. Math..

[3]  J. Siam A LINEAR TIME ALGORITHM FOR FINDING MINIMUM CUTSETS IN REDUCIBLE GRAPHS , 1979 .

[4]  D. Peleg Local Majority Voting, Small Coalitions and Controlling Monopolies in Graphs: A Review , 1996 .

[5]  F. Leighton,et al.  Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes , 1991 .

[6]  David S. Johnson,et al.  Computers and In stractability: A Guide to the Theory of NP-Completeness. W. H Freeman, San Fran , 1979 .

[7]  Adi Shamir,et al.  A Linear Time Algorithm for Finding Minimum Cutsets in Reducible Graphs , 1979, SIAM J. Comput..

[8]  Graeme Smith,et al.  The identification of a minimal feedback vertex set of a directed graph , 1975 .

[9]  David Peleg,et al.  Feedback vertex set in hypercubes , 2000, Inf. Process. Lett..

[10]  Chuan Yi Tang,et al.  A Linear-Time Algorithm for the Weighted Feedback Vertex Problem on Interval Graphs , 1997, Inf. Process. Lett..

[11]  Amit Kumar,et al.  Wavelength conversion in optical networks , 1999, SODA '99.

[12]  Reuven Bar-Yehuda,et al.  Approximation Algorithms for the Feedback Vertex Set Problem with Applications to Constraint Satisfaction and Bayesian Inference , 1998, SIAM J. Comput..

[13]  Mary Lou Soffa,et al.  Feedback vertex sets and cyclically reducible graphs , 1985, JACM.

[14]  Maw-Shang Chang,et al.  Minimum feedback vertex sets in cocomparability graphs and convex bipartite graphs , 1997, Acta Informatica.

[15]  Y. Daniel Liang On the Feedback Vertex Set Problem in Permutation Graphs , 1994, Inf. Process. Lett..

[16]  Flaminia L. Luccio Almost Exact Minimum Feedback Vertex Set in Meshes and Butterflies , 1998, Inf. Process. Lett..