Control?structure interaction for micro-vibration structural control

The giant magnetostrictive actuator (GMA) is a typical actuator used in micro-vibration control applications. Research in the area of micro-vibration control has been conducted, but the effects of control–structure interaction have not been considered in most of the previous studies. Only hydraulic actuator and linear motor models have been developed to investigate actuator–structure interaction. To investigate the role of control–structure interaction (CSI) with the new GMA and multi-degree-of-freedom (MDOF) coupling platform system for micro-vibration control, computational models considering the interaction between the GMA and structure are developed in this paper. The models show that the dynamics of the GMA and the structure are tightly coupled. The model is further verified through experiments. Numerical results of a control study in which the multi-degree coupling platform system does and does not consider CSI are compared. The results demonstrate that consideration of the CSI and the dynamics of the GMA can improve the performance of a controller significantly. Consideration of this interaction and the dynamics of the GMA is essential when modeling a micro-vibration control system.

[1]  Mark L. Spano,et al.  Effect of stress on the magnetostriction and magnetization of rare earth-Re 1.95 alloys , 1983 .

[2]  Takafumi Fujita,et al.  Application of Active Micro-vibration Control System using a Giant Magnetostrictive Actuator , 2007 .

[3]  Takuji Kobori,et al.  Active mass driver system as the first application of active structural control , 2001 .

[4]  James T. P. Yao,et al.  CONCEPT OF STRUCTURAL CONTROL , 1972 .

[5]  Shirley J. Dyke,et al.  Role of Control-Structure Interaction in Protective System Design , 1995 .

[6]  Alison B. Flatau,et al.  Development and Analysis of a Self-Sensing Magnetostrictive Actuator Design , 1995 .

[7]  Kiyoshi Tanaka,et al.  Development of active 6-DOF microvibration control system using giant magnetostrictive actuator , 1999, Smart Structures.

[8]  Jong-Cheng Wu,et al.  Modeling of an actively braced full‐scale building considering control–structure interaction , 2000 .

[9]  Christian Madshus,et al.  Vibration criteria for metrology laboratories , 1999 .

[10]  Tang Zhi-feng Self-sensing principle of magnetostrictive actuator , 2007 .

[11]  Zhang Chun-wei Modeling and testing for electromagnetic mass damper and structure coupled system , 2006 .

[12]  R. D. Greenough,et al.  The stress dependence of k/sub 33/, d/sub 33/, lambda and mu in Tb/sub 0.3/Dy/sub 0.7/Fe/sub 1.95/ , 1992 .

[13]  Jianzhuang Jiang,et al.  Comparative density functional theory study of the structures and properties of metallophthalocyanines of group IV B , 2006 .

[14]  Kouichi Kajiwara,et al.  Active 6-DOF Microvibration Control System Using Piezoelectric Actuators , 1993 .

[15]  Michael D. Bryant,et al.  Audio Range Dynamic Models and Controllability of Linear Motion Terfenol Actuators , 1994 .

[16]  Michael D. Bryant,et al.  Attenuation and transformation of vibration through active control of magnetostrictive terfenol , 1989 .