Toward domain adaptation with open-set target data: Review of theory and computer vision applications

[1]  Wensheng Zhang,et al.  Open set domain adaptation with latent structure discovery and kernelized classifier learning , 2023, Neurocomputing.

[2]  Tinghuai Ma,et al.  Source-free Unsupervised Domain Adaptation with Trusted Pseudo Samples , 2022, ACM Trans. Intell. Syst. Technol..

[3]  Liu Yang,et al.  Uncertainty-Aware Aggregation for Federated Open Set Domain Adaptation , 2022, IEEE Transactions on Neural Networks and Learning Systems.

[4]  Hongqing Zhu,et al.  GCL-OSDA: Uncertainty prediction-based graph collaborative learning for open-set domain adaptation , 2022, Knowl. Based Syst..

[5]  G. Fakhri,et al.  Deep Unsupervised Domain Adaptation: A Review of Recent Advances and Perspectives , 2022, APSIPA Transactions on Signal and Information Processing.

[6]  Jingrui He,et al.  Domain Adaptation with Dynamic Open-Set Targets , 2022, KDD.

[7]  Xin Zhao,et al.  Open-set domain adaptation by deconfounding domain gaps , 2022, Applied Intelligence.

[8]  Shiliang Pu,et al.  Universal Domain Adaptive Object Detector , 2022, ACM Multimedia.

[9]  K. Aizawa,et al.  Self-Labeling Framework for Novel Category Discovery over Domains , 2022, AAAI.

[10]  Il-Chul Moon,et al.  Unknown-Aware Domain Adversarial Learning for Open-Set Domain Adaptation , 2022, NeurIPS.

[11]  S. Chaudhuri,et al.  Open-Set Domain Adaptation Under Few Source-Domain Labeled Samples , 2022, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[12]  Yiguang Liu,et al.  Multi-source unsupervised domain adaptation for object detection , 2022, Inf. Fusion.

[13]  M. Salzmann,et al.  Learning to Generate the Unknowns as a Remedy to the Open-Set Domain Shift , 2022, 2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV).

[14]  Ke Lu,et al.  Open Set Domain Adaptation via Joint Alignment and Category Separation , 2021, IEEE Transactions on Neural Networks and Learning Systems.

[15]  Q. M. Wu,et al.  D-BIN: A Generalized Disentangling Batch Instance Normalization for Domain Adaptation , 2021, IEEE Transactions on Cybernetics.

[16]  Zhenwei Shi,et al.  An Open Set Domain Adaptation Algorithm via Exploring Transferability and Discriminability for Remote Sensing Image Scene Classification , 2021, IEEE Transactions on Geoscience and Remote Sensing.

[17]  C. D. de Silva,et al.  Mutual Variational Inference: An Indirect Variational Inference Approach for Unsupervised Domain Adaptation , 2021, IEEE Transactions on Cybernetics.

[18]  Mahsa Baktash,et al.  Conditional Extreme Value Theory for Open Set Video Domain Adaptation , 2021, MMAsia.

[19]  Tatiana Tommasi,et al.  Distance-based Hyperspherical Classification for Multi-source Open-Set Domain Adaptation , 2021, 2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV).

[20]  Kai Ma,et al.  Anomaly Detection for Medical Images Using Self-Supervised and Translation-Consistent Features , 2021, IEEE Transactions on Medical Imaging.

[21]  Hau-San Wong,et al.  Knowledge Exchange Between Domain-Adversarial and Private Networks Improves Open Set Image Classification , 2021, IEEE Transactions on Image Processing.

[22]  Vishal M. Patel,et al.  Unsupervised Domain Adaptation of Object Detectors: A Survey , 2021, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[23]  Zhengming Ding,et al.  Balanced Open Set Domain Adaptation via Centroid Alignment , 2021, AAAI.

[24]  Zhengming Ding,et al.  Towards Novel Target Discovery Through Open-Set Domain Adaptation , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[25]  Kurt Keutzer,et al.  Prototypical Cross-domain Self-supervised Learning for Few-shot Unsupervised Domain Adaptation , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[26]  Abhimanyu Dubey,et al.  Adaptive Methods for Real-World Domain Generalization , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[27]  Lei Zhang,et al.  Dynamic Weighted Learning for Unsupervised Domain Adaptation , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[28]  Cuiling Lan,et al.  Generalizing to Unseen Domains: A Survey on Domain Generalization , 2021, IEEE Transactions on Knowledge and Data Engineering.

[29]  Gao Huang,et al.  Generalized Domain Conditioned Adaptation Network , 2021, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[30]  Heng Tao Shen,et al.  Faster Domain Adaptation Networks , 2021, IEEE Transactions on Knowledge and Data Engineering.

[31]  Hao Guan,et al.  Domain Adaptation for Medical Image Analysis: A Survey , 2021, IEEE Transactions on Biomedical Engineering.

[32]  Yuan Yuan,et al.  Open Set Domain Recognition via Attention-Based GCN and Semantic Matching Optimization , 2021, 2020 25th International Conference on Pattern Recognition (ICPR).

[33]  Li Liu,et al.  A Review of Uncertainty Quantification in Deep Learning: Techniques, Applications and Challenges , 2020, Inf. Fusion.

[34]  Joost van de Weijer,et al.  Class-Incremental Learning: Survey and Performance Evaluation on Image Classification , 2020, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[35]  Hamid R. Arabnia,et al.  A Brief Review of Domain Adaptation , 2020, Advances in Data Science and Information Engineering.

[36]  Gilles Gasso,et al.  Open Set Domain Adaptation using Optimal Transport , 2020, ECML/PKDD.

[37]  Dacheng Tao,et al.  Open-Set Hypothesis Transfer With Semantic Consistency , 2020, IEEE Transactions on Image Processing.

[38]  Jinpeng Wang,et al.  Adversarial open set domain adaptation via progressive selection of transferable target samples , 2020, Neurocomputing.

[39]  Dongrui Wu,et al.  A Survey on Negative Transfer , 2020, IEEE/CAA Journal of Automatica Sinica.

[40]  Alberto L. Sangiovanni-Vincentelli,et al.  A Review of Single-Source Deep Unsupervised Visual Domain Adaptation , 2020, IEEE Transactions on Neural Networks and Learning Systems.

[41]  Zhihui Li,et al.  A Survey of Deep Active Learning , 2020, ACM Comput. Surv..

[42]  Markus Vincze,et al.  Positive-unlabeled learning for open set domain adaptation , 2020, Pattern Recognit. Lett..

[43]  Tatiana Tommasi,et al.  On the Effectiveness of Image Rotation for Open Set Domain Adaptation , 2020, ECCV.

[44]  Yin Zhang,et al.  Joint Partial Optimal Transport for Open Set Domain Adaptation , 2020, IJCAI.

[45]  Guojun Lu,et al.  Adversarial Network With Multiple Classifiers for Open Set Domain Adaptation , 2020, IEEE Transactions on Multimedia.

[46]  Liang Liu,et al.  Learning Likelihood Estimates for Open Set Domain Adaptation , 2020, 2020 IEEE International Conference on Multimedia and Expo (ICME).

[47]  Feng Liu,et al.  Bridging the Theoretical Bound and Deep Algorithms for Open Set Domain Adaptation , 2020, IEEE Transactions on Neural Networks and Learning Systems.

[48]  Zi Huang,et al.  Progressive Graph Learning for Open-Set Domain Adaptation , 2020, ICML.

[49]  Tao Mei,et al.  Exploring Category-Agnostic Clusters for Open-Set Domain Adaptation , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[50]  Yunbo Wang,et al.  Progressive Adversarial Networks for Fine-Grained Domain Adaptation , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[51]  Barbara Plank,et al.  Neural Unsupervised Domain Adaptation in NLP—A Survey , 2020, COLING.

[52]  Fuzhen Zhuang,et al.  Deep Subdomain Adaptation Network for Image Classification , 2020, IEEE Transactions on Neural Networks and Learning Systems.

[53]  Lu Ke,et al.  Maximum Density Divergence for Domain Adaptation , 2020, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[54]  R. Venkatesh Babu,et al.  Towards Inheritable Models for Open-Set Domain Adaptation , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[55]  Zheng-Jun Zha,et al.  Filtration and Distillation: Enhancing Region Attention for Fine-Grained Visual Categorization , 2020, AAAI.

[56]  Chi Harold Liu,et al.  Domain Conditioned Adaptation Network , 2020, AAAI.

[57]  Gal Chechik,et al.  Self-Supervised Learning for Domain Adaptation on Point Clouds , 2020, 2021 IEEE Winter Conference on Applications of Computer Vision (WACV).

[58]  Qingming Huang,et al.  Towards Discriminability and Diversity: Batch Nuclear-Norm Maximization Under Label Insufficient Situations , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[59]  Alexandre Drouin,et al.  Embedding Propagation: Smoother Manifold for Few-Shot Classification , 2020, ECCV.

[60]  Lei Zhang,et al.  Unsupervised Multi-Class Domain Adaptation: Theory, Algorithms, and Practice , 2020, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[61]  Yung Yi,et al.  Enlarging Discriminative Power by Adding an Extra Class in Unsupervised Domain Adaptation , 2020, 2020 25th International Conference on Pattern Recognition (ICPR).

[62]  Geoffrey E. Hinton,et al.  A Simple Framework for Contrastive Learning of Visual Representations , 2020, ICML.

[63]  Andrew Zisserman,et al.  Automatically Discovering and Learning New Visual Categories with Ranking Statistics , 2020, ICLR.

[64]  Zhengming Ding,et al.  Deep Residual Correction Network for Partial Domain Adaptation , 2020, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[65]  Mingsheng Long,et al.  Minimum Class Confusion for Versatile Domain Adaptation , 2019, ECCV.

[66]  Toby P. Breckon,et al.  Unsupervised Domain Adaptation via Structured Prediction Based Selective Pseudo-Labeling , 2019, AAAI.

[67]  Hui Xiong,et al.  A Comprehensive Survey on Transfer Learning , 2019, Proceedings of the IEEE.

[68]  Zhenyue Zhang,et al.  Semi-Supervised Domain Adaptation by Covariance Matching , 2019, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[69]  Saining Xie,et al.  Decoupling Representation and Classifier for Long-Tailed Recognition , 2019, ICLR.

[70]  Zhengming Ding,et al.  Joint Adversarial Domain Adaptation , 2019, ACM Multimedia.

[71]  John K. Tsotsos,et al.  PIE: A Large-Scale Dataset and Models for Pedestrian Intention Estimation and Trajectory Prediction , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[72]  Javed Iqbal,et al.  MLSL: Multi-Level Self-Supervised Learning for Domain Adaptation with Spatially Independent and Semantically Consistent Labeling , 2019, 2020 IEEE Winter Conference on Applications of Computer Vision (WACV).

[73]  Jiahui Fu,et al.  Improved Open Set Domain Adaptation with Backpropagation , 2019, 2019 IEEE International Conference on Image Processing (ICIP).

[74]  Yi Yang,et al.  Attract or Distract: Exploit the Margin of Open Set , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[75]  Liang Xiao,et al.  Self-Supervised Domain Adaptation for Computer Vision Tasks , 2019, IEEE Access.

[76]  Feng Liu,et al.  Open Set Domain Adaptation: Theoretical Bound and Algorithm , 2019, IEEE Transactions on Neural Networks and Learning Systems.

[77]  Terrance E. Boult,et al.  Learning and the Unknown: Surveying Steps toward Open World Recognition , 2019, AAAI.

[78]  Xu Han,et al.  Improving Open Set Domain Adaptation Using Image-to-Image Translation , 2019, 2019 IEEE International Conference on Multimedia and Expo (ICME).

[79]  Hongtao Lu,et al.  Unsupervised Person Re-Identification With Iterative Self-Supervised Domain Adaptation , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[80]  Hong Liu,et al.  Separate to Adapt: Open Set Domain Adaptation via Progressive Separation , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[81]  Michael I. Jordan,et al.  Universal Domain Adaptation , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[82]  Bohyung Han,et al.  Domain-Specific Batch Normalization for Unsupervised Domain Adaptation , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[83]  Michael I. Jordan,et al.  Transferable Adversarial Training: A General Approach to Adapting Deep Classifiers , 2019, ICML.

[84]  Kilian Q. Weinberger,et al.  Convolutional Networks with Dense Connectivity , 2019, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[85]  Dacheng Tao,et al.  Orthogonal Deep Neural Networks , 2019, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[86]  Zhenan Sun,et al.  Aggregating Randomized Clustering-Promoting Invariant Projections for Domain Adaptation , 2019, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[87]  Qingming Huang,et al.  Unsupervised Open Domain Recognition by Semantic Discrepancy Minimization , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[88]  Trevor Darrell,et al.  Semi-Supervised Domain Adaptation via Minimax Entropy , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[89]  Yuchen Zhang,et al.  Bridging Theory and Algorithm for Domain Adaptation , 2019, ICML.

[90]  Mingkui Tan,et al.  Domain-Symmetric Networks for Adversarial Domain Adaptation , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[91]  Jianmin Wang,et al.  Learning to Transfer Examples for Partial Domain Adaptation , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[92]  Toby P. Breckon,et al.  Unifying Unsupervised Domain Adaptation and Zero-Shot Visual Recognition , 2019, 2019 International Joint Conference on Neural Networks (IJCNN).

[93]  Fabio Maria Carlucci,et al.  Domain Generalization by Solving Jigsaw Puzzles , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[94]  Lei Zhang,et al.  Transfer Adaptation Learning: A Decade Survey , 2019, IEEE transactions on neural networks and learning systems.

[95]  Tianzhu Zhang,et al.  Deep Multi-Modality Adversarial Networks for Unsupervised Domain Adaptation , 2019, IEEE Transactions on Multimedia.

[96]  Yingli Tian,et al.  Self-Supervised Visual Feature Learning With Deep Neural Networks: A Survey , 2019, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[97]  Wouter M. Kouw,et al.  A Review of Domain Adaptation without Target Labels , 2019, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[98]  Bo Wang,et al.  Moment Matching for Multi-Source Domain Adaptation , 2018, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[99]  Songcan Chen,et al.  Recent Advances in Open Set Recognition: A Survey , 2018, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[100]  Biao Leng,et al.  Angular Triplet-Center Loss for Multi-view 3D Shape Retrieval , 2018, AAAI.

[101]  Liang Lin,et al.  Larger Norm More Transferable: An Adaptive Feature Norm Approach for Unsupervised Domain Adaptation , 2018, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[102]  Masashi Sugiyama,et al.  Unsupervised Domain Adaptation Based on Source-guided Discrepancy , 2018, AAAI.

[103]  R. Devon Hjelm,et al.  Learning deep representations by mutual information estimation and maximization , 2018, ICLR.

[104]  Jianmin Wang,et al.  Partial Adversarial Domain Adaptation , 2018, ECCV.

[105]  Chao Yang,et al.  A Survey on Deep Transfer Learning , 2018, ICANN.

[106]  In-So Kweon,et al.  CBAM: Convolutional Block Attention Module , 2018, ECCV.

[107]  Stanislav Pidhorskyi,et al.  Generative Probabilistic Novelty Detection with Adversarial Autoencoders , 2018, NeurIPS.

[108]  Chuan Chen,et al.  Learning Semantic Representations for Unsupervised Domain Adaptation , 2018, ICML.

[109]  Ioannis Mitliagkas,et al.  Manifold Mixup: Better Representations by Interpolating Hidden States , 2018, ICML.

[110]  Murat Sensoy,et al.  Evidential Deep Learning to Quantify Classification Uncertainty , 2018, NeurIPS.

[111]  Yang Song,et al.  Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[112]  Stella X. Yu,et al.  Unsupervised Feature Learning via Non-parametric Instance Discrimination , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[113]  Tom Drummond,et al.  Learning Factorized Representations for Open-set Domain Adaptation , 2018, ICLR.

[114]  Cheng Wu,et al.  Domain Invariant and Class Discriminative Feature Learning for Visual Domain Adaptation , 2018, IEEE Transactions on Image Processing.

[115]  Ran El-Yaniv,et al.  Deep Anomaly Detection Using Geometric Transformations , 2018, NeurIPS.

[116]  Jianmin Wang,et al.  Multi-Adversarial Domain Adaptation , 2018, AAAI.

[117]  Tatsuya Harada,et al.  Open Set Domain Adaptation by Backpropagation , 2018, ECCV.

[118]  Nicola De Cao,et al.  Hyperspherical Variational Auto-Encoders , 2018, UAI 2018.

[119]  Yang Liu,et al.  Transductive Unbiased Embedding for Zero-Shot Learning , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[120]  Nicolas Courty,et al.  DeepJDOT: Deep Joint distribution optimal transport for unsupervised domain adaptation , 2018, ECCV.

[121]  Jiansheng Chen,et al.  Rethinking Feature Distribution for Loss Functions in Image Classification , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[122]  Stefano Ermon,et al.  A DIRT-T Approach to Unsupervised Domain Adaptation , 2018, ICLR.

[123]  Nikos Komodakis,et al.  Unsupervised Representation Learning by Predicting Image Rotations , 2018, ICLR.

[124]  Mei Wang,et al.  Deep Visual Domain Adaptation: A Survey , 2018, Neurocomputing.

[125]  Kibok Lee,et al.  Training Confidence-calibrated Classifiers for Detecting Out-of-Distribution Samples , 2017, ICLR.

[126]  Taesung Park,et al.  CyCADA: Cycle-Consistent Adversarial Domain Adaptation , 2017, ICML.

[127]  Yiqiang Chen,et al.  Balanced Distribution Adaptation for Transfer Learning , 2017, 2017 IEEE International Conference on Data Mining (ICDM).

[128]  Pietro Liò,et al.  Graph Attention Networks , 2017, ICLR.

[129]  Hongyi Zhang,et al.  mixup: Beyond Empirical Risk Minimization , 2017, ICLR.

[130]  Yongxin Yang,et al.  Deeper, Broader and Artier Domain Generalization , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[131]  Juergen Gall,et al.  Open Set Domain Adaptation , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[132]  Gang Sun,et al.  Squeeze-and-Excitation Networks , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[133]  Daniel Cremers,et al.  Associative Domain Adaptation , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[134]  Contrastive-center loss for deep neural networks , 2017, 2017 IEEE International Conference on Image Processing (ICIP).

[135]  Rahil Garnavi,et al.  Generative OpenMax for Multi-Class Open Set Classification , 2017, BMVC.

[136]  Bohyung Han,et al.  BranchOut: Regularization for Online Ensemble Tracking with Convolutional Neural Networks , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[137]  Yan Tong,et al.  Incremental Boosting Convolutional Neural Network for Facial Action Unit Recognition , 2017, NIPS.

[138]  Sethuraman Panchanathan,et al.  Deep Hashing Network for Unsupervised Domain Adaptation , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[139]  Geoffrey French,et al.  Self-ensembling for visual domain adaptation , 2017, ICLR.

[140]  Michael I. Jordan,et al.  Conditional Adversarial Domain Adaptation , 2017, NeurIPS.

[141]  Nicolas Courty,et al.  Joint distribution optimal transportation for domain adaptation , 2017, NIPS.

[142]  Qilong Wang,et al.  Mind the Class Weight Bias: Weighted Maximum Mean Discrepancy for Unsupervised Domain Adaptation , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[143]  Bhiksha Raj,et al.  SphereFace: Deep Hypersphere Embedding for Face Recognition , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[144]  Shin Ishii,et al.  Virtual Adversarial Training: A Regularization Method for Supervised and Semi-Supervised Learning , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[145]  Carlos D. Castillo,et al.  Generate to Adapt: Aligning Domains Using Generative Adversarial Networks , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[146]  Georg Langs,et al.  Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery , 2017, IPMI.

[147]  Richard S. Zemel,et al.  Prototypical Networks for Few-shot Learning , 2017, NIPS.

[148]  Yingyu Liang,et al.  Generalization and Equilibrium in Generative Adversarial Nets (GANs) , 2017, ICML.

[149]  Ricardo da Silva Torres,et al.  Nearest neighbors distance ratio open-set classifier , 2016, Machine Learning.

[150]  Harri Valpola,et al.  Weight-averaged consistency targets improve semi-supervised deep learning results , 2017, ArXiv.

[151]  Dumitru Erhan,et al.  Unsupervised Pixel-Level Domain Adaptation with Generative Adversarial Networks , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[152]  Lior Wolf,et al.  Unsupervised Cross-Domain Image Generation , 2016, ICLR.

[153]  Jacob Goldberger,et al.  Training deep neural-networks using a noise adaptation layer , 2016, ICLR.

[154]  Jonathon Shlens,et al.  Conditional Image Synthesis with Auxiliary Classifier GANs , 2016, ICML.

[155]  George Trigeorgis,et al.  Domain Separation Networks , 2016, NIPS.

[156]  Gabriela Csurka,et al.  Domain Adaptation in the Absence of Source Domain Data , 2016, KDD.

[157]  Mengjie Zhang,et al.  Deep Reconstruction-Classification Networks for Unsupervised Domain Adaptation , 2016, ECCV.

[158]  Yueting Zhuang,et al.  Self-Paced Boost Learning for Classification , 2016, IJCAI.

[159]  Kate Saenko,et al.  Deep CORAL: Correlation Alignment for Deep Domain Adaptation , 2016, ECCV Workshops.

[160]  Ming-Yu Liu,et al.  Coupled Generative Adversarial Networks , 2016, NIPS.

[161]  Meng Yang,et al.  Large-Margin Softmax Loss for Convolutional Neural Networks , 2016, ICML.

[162]  Wojciech Zaremba,et al.  Improved Techniques for Training GANs , 2016, NIPS.

[163]  Karl R. Weiss,et al.  A survey of transfer learning , 2016, Journal of Big Data.

[164]  Michael I. Jordan,et al.  Deep Transfer Learning with Joint Adaptation Networks , 2016, ICML.

[165]  David A. Forsyth,et al.  Swapout: Learning an ensemble of deep architectures , 2016, NIPS.

[166]  Blaise Agüera y Arcas,et al.  Communication-Efficient Learning of Deep Networks from Decentralized Data , 2016, AISTATS.

[167]  Michael I. Jordan,et al.  Unsupervised Domain Adaptation with Residual Transfer Networks , 2016, NIPS.

[168]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[169]  Sergey Ioffe,et al.  Rethinking the Inception Architecture for Computer Vision , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[170]  Terrance E. Boult,et al.  Towards Open Set Deep Networks , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[171]  Fuzhen Zhuang,et al.  Supervised Representation Learning: Transfer Learning with Deep Autoencoders , 2015, IJCAI.

[172]  Shiliang Sun,et al.  A survey of multi-source domain adaptation , 2015, Inf. Fusion.

[173]  François Laviolette,et al.  Domain-Adversarial Training of Neural Networks , 2015, J. Mach. Learn. Res..

[174]  Michael I. Jordan,et al.  Learning Transferable Features with Deep Adaptation Networks , 2015, ICML.

[175]  Nicolas Courty,et al.  Optimal Transport for Domain Adaptation , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[176]  Trevor Darrell,et al.  Fully convolutional networks for semantic segmentation , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[177]  Yoshua Bengio,et al.  How transferable are features in deep neural networks? , 2014, NIPS.

[178]  Victor S. Lempitsky,et al.  Unsupervised Domain Adaptation by Backpropagation , 2014, ICML.

[179]  Terrance E. Boult,et al.  Multi-class Open Set Recognition Using Probability of Inclusion , 2014, ECCV.

[180]  Michael S. Bernstein,et al.  ImageNet Large Scale Visual Recognition Challenge , 2014, International Journal of Computer Vision.

[181]  Aaron C. Courville,et al.  Generative Adversarial Nets , 2014, NIPS.

[182]  Andrew Zisserman,et al.  Two-Stream Convolutional Networks for Action Recognition in Videos , 2014, NIPS.

[183]  Bernt Schiele,et al.  Transfer Learning in a Transductive Setting , 2013, NIPS.

[184]  Philip S. Yu,et al.  Transfer Feature Learning with Joint Distribution Adaptation , 2013, 2013 IEEE International Conference on Computer Vision.

[185]  Trevor Darrell,et al.  DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition , 2013, ICML.

[186]  Anderson Rocha,et al.  Toward Open Set Recognition , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[187]  Bernhard Schölkopf,et al.  A Kernel Two-Sample Test , 2012, J. Mach. Learn. Res..

[188]  Geoffrey E. Hinton,et al.  Learning to combine foveal glimpses with a third-order Boltzmann machine , 2010, NIPS.

[189]  Qiang Yang,et al.  A Survey on Transfer Learning , 2010, IEEE Transactions on Knowledge and Data Engineering.

[190]  Trevor Darrell,et al.  Adapting Visual Category Models to New Domains , 2010, ECCV.

[191]  Koby Crammer,et al.  A theory of learning from different domains , 2010, Machine Learning.

[192]  Ivor W. Tsang,et al.  Domain Adaptation via Transfer Component Analysis , 2009, IEEE Transactions on Neural Networks.

[193]  Christoph H. Lampert,et al.  Learning to detect unseen object classes by between-class attribute transfer , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[194]  Yishay Mansour,et al.  Domain Adaptation: Learning Bounds and Algorithms , 2009, COLT.

[195]  Raffaele Giancarlo,et al.  Computational cluster validation for microarray data analysis: experimental assessment of Clest, Consensus Clustering, Figure of Merit, Gap Statistics and Model Explorer , 2008, BMC Bioinformatics.

[196]  Yoshua Bengio,et al.  Zero-data Learning of New Tasks , 2008, AAAI.

[197]  Koby Crammer,et al.  Analysis of Representations for Domain Adaptation , 2006, NIPS.

[198]  Bernhard Schölkopf,et al.  A Kernel Method for the Two-Sample-Problem , 2006, NIPS.

[199]  Yoshua Bengio,et al.  Semi-supervised Learning by Entropy Minimization , 2004, CAP.

[200]  Xiaofei He,et al.  Locality Preserving Projections , 2003, NIPS.

[201]  Hans-Peter Kriegel,et al.  LOF: identifying density-based local outliers , 2000, SIGMOD '00.

[202]  Jonathan J. Hull,et al.  A Database for Handwritten Text Recognition Research , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[203]  Liu Yang,et al.  WDAN: A Weighted Discriminative Adversarial Network With Dual Classifiers for Fine-Grained Open-Set Domain Adaptation , 2023, IEEE Transactions on Circuits and Systems for Video Technology.

[204]  D. Hou,et al.  A Self-Supervised-Driven Open-Set Unsupervised Domain Adaptation Method for Optical Remote Sensing Image Scene Classification and Retrieval , 2023, IEEE Transactions on Geoscience and Remote Sensing.

[205]  K. Aizawa,et al.  Self-Labeling Framework for Open-Set Domain Adaptation With Few Labeled Samples , 2024, IEEE Transactions on Multimedia.

[206]  Weiwei SUN,et al.  Domain Adaptation in Remote Sensing Image Classification: A Survey , 2022, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[207]  Changjun Jiang,et al.  PSDC: A Prototype-Based Shared-Dummy Classifier Model for Open-Set Domain Adaptation , 2022, IEEE Transactions on Cybernetics.

[208]  Gangyao Kuang,et al.  Informative Feature Disentanglement for Unsupervised Domain Adaptation , 2022, IEEE Transactions on Multimedia.

[209]  Zenghui Zhang,et al.  Transferable SAR Image Classification Crossing Different Satellites Under Open Set Condition , 2022, IEEE Geoscience and Remote Sensing Letters.

[210]  H. Fu,et al.  Delving into Local Features for Open-Set Domain Adaptation in Fundus Image Analysis , 2022, MICCAI.

[211]  K NgMichael,et al.  Knowledge Preserving and Distribution Alignment for Heterogeneous Domain Adaptation , 2022 .

[212]  Yuan Gao,et al.  A survey on federated learning , 2021, Knowl. Based Syst..

[213]  Jinghua Wang,et al.  Exploring Category Attention for Open Set Domain Adaptation , 2021, IEEE Access.

[214]  Subhasis Chaudhuri,et al.  Multi-source Open-Set Deep Adversarial Domain Adaptation , 2020, ECCV.

[215]  Andrew Y. Ng,et al.  Reading Digits in Natural Images with Unsupervised Feature Learning , 2011 .

[216]  Steven Haker,et al.  Minimizing Flows for the Monge-Kantorovich Problem , 2003, SIAM J. Math. Anal..

[217]  Ning Qian,et al.  On the momentum term in gradient descent learning algorithms , 1999, Neural Networks.

[218]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.