Anti-forcing spectra of perfect matchings of graphs

Let M be a perfect matching of a graph G. The smallest number of edges whose removal to make M as the unique perfect matching in the resulting subgraph is called the anti-forcing number of M. The anti-forcing spectrum of G is the set of anti-forcing numbers of all perfect matchings in G, denoted by $$\hbox {Spec}_{af}(G)$$Specaf(G). In this paper, we show that any finite set of positive integers can be the anti-forcing spectrum of a graph. We present two classes of hexagonal systems whose anti-forcing spectra are integer intervals. Finally, we show that determining the anti-forcing number of a perfect matching of a bipartite graph with maximum degree four is a NP-complete problem.

[1]  Lior Pachter,et al.  Forcing matchings on square grids , 1998, Discret. Math..

[2]  Heping Zhang,et al.  On forcing matching number of boron-nitrogen fullerene graphs , 2011, Discret. Appl. Math..

[3]  Heping Zhang,et al.  Anti-forcing numbers of perfect matchings of graphs , 2014, Discret. Appl. Math..

[4]  Fuji Zhang,et al.  Z-transformation graphs of perfect matchings of hexagonal systems , 1988, Discret. Math..

[5]  Xueliang Li,et al.  Hexagonal systems with forcing edges , 1995, Discret. Math..

[6]  Peter Adams,et al.  On the forced matching numbers of bipartite graphs , 2004, Discret. Math..

[7]  Zhongyuan Che,et al.  Forcing on Perfect Matchings - A Survey , 2011 .

[8]  Harold N. Gabow Centroids, Representations, and Submodular Flows , 1995, J. Algorithms.

[9]  Zhang He-ping,et al.  The clar formulas of regular t-tier strip benzenoid systems , 1995 .

[10]  Fuji Zhang,et al.  The connectivity ofZ-transformation graphs of perfect matchings of hexagonal systems , 1988 .

[11]  F. Harary,et al.  Graphical properties of polyhexes: Perfect matching vector and forcing , 1991 .

[12]  M. Randic,et al.  Innate degree of freedom of a graph , 1987 .

[13]  Heping Zhang,et al.  Forcing matching numbers of fullerene graphs , 2010, Discret. Appl. Math..

[14]  N. Trinajstic,et al.  On the Anti-forcing Number of Benzenoids , 2007 .

[15]  Nenad Trinajstić,et al.  On the anti-Kekulé number and anti-forcing number of cata-condensed benzenoids , 2008 .

[16]  Xueliang Li Hexagonal Systems with Forcing Single Edges , 1997, Discret. Appl. Math..

[17]  Richard M. Karp,et al.  Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.

[18]  Elkin Vumar,et al.  On the Anti-Kekule and Anti-Forcing Number of Cata-condensed Phenylenes , 2011 .

[19]  K. Fries,et al.  Über bicyclische Verbindungen und ihren Vergleich mit dem Naphtalin. III. Mitteilung , 1927 .

[20]  Hamed Hatami,et al.  On the spectrum of the forced matching number of graphs , 2004, Australas. J Comb..

[21]  S. J. Cyvin,et al.  Kekule Structures in Benzenoid Hydrocarbons , 1988 .

[22]  Matthew E. Riddle The minimum forcing number for the torus and hypercube , 2002, Discret. Math..

[23]  Heping Zhang,et al.  On the Anti-Forcing Number of Fullerene Graphs , 2015 .

[24]  N. Biggs MATCHING THEORY (Annals of Discrete Mathematics 29) , 1988 .

[25]  Pierre Hansen,et al.  Bonds Fixed by Fixing Bonds , 1993, J. Chem. Inf. Comput. Sci..

[26]  Heping Zhang,et al.  Plane elementary bipartite graphs , 2000, Discret. Appl. Math..

[27]  Heping Zhang,et al.  The forcing number of toroidal polyhexes , 2008 .