Plasmonic nanofocusing with a metallic pyramid and an integrated C-shaped aperture

We demonstrate the design, fabrication and characterization of a near-field plasmonic nanofocusing probe with a hybrid tip-plus-aperture design. By combining template stripping with focused ion beam lithography, a variety of aperture-based near-field probes can be fabricated with high optical performance. In particular, the combination of large transmission through a C-shaped aperture aligned to the sharp apex (<10 nm radius) of a template-stripped metallic pyramid allows the efficient delivery of light—via the C-shaped aperture—while providing a nanometric hotspot determined by the sharpness of the tip itself.

[1]  R. H. Ritchie Plasma Losses by Fast Electrons in Thin Films , 1957 .

[2]  H. Raether Surface Plasmons on Smooth and Rough Surfaces and on Gratings , 1988 .

[3]  E. Betzig,et al.  Near-Field Optics: Microscopy, Spectroscopy, and Surface Modification Beyond the Diffraction Limit , 1992, Science.

[4]  Martin Hegner,et al.  Ultralarge atomically flat template-stripped Au surfaces for scanning probe microscopy , 1993 .

[5]  Lukas Novotny,et al.  Theory of Nanometric Optical Tweezers , 1997 .

[6]  X. Xie,et al.  Near-field fluorescence microscopy based on two-photon excitation with metal tips , 1999 .

[7]  Kh. V. Nerkararyan,et al.  Superfocusing of surface polaritons in the conical structure , 2000 .

[8]  F. Keilmann,et al.  Enhancing the resolution of scanning near-field optical microscopy by a metal tip grown on an aperture probe , 2002 .

[9]  Lambertus Hesselink,et al.  Ultrahigh light transmission through a C-shaped nanoaperture. , 2003, Optics letters.

[10]  A. Bouhelier,et al.  Plasmon‐coupled tip‐enhanced near‐field optical microscopy , 2003, Journal of microscopy.

[11]  A. Bouhelier,et al.  Near-field second-harmonic generation induced by local field enhancement. , 2003, Physical review letters.

[12]  Harry A. Atwater,et al.  Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides , 2003, Nature materials.

[13]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[14]  Franciscus B. Segerink,et al.  Influence of hole size on the extraordinary transmission through subwavelength hole arrays , 2004 .

[15]  K. Kavanagh,et al.  Strong polarization in the optical transmission through elliptical nanohole arrays. , 2004, Physical review letters.

[16]  M. Stockman,et al.  Nanofocusing of optical energy in tapered plasmonic waveguides. , 2004, Physical review letters.

[17]  J. Pearson,et al.  Subwavelength focusing and guiding of surface plasmons. , 2005, Nano letters.

[18]  Matthew M Adams,et al.  Resonant-plasmon field enhancement from asymmetrically illuminated conical metallic-probe tips. , 2006, Optics express.

[19]  B. Hecht,et al.  Principles of nano-optics , 2006 .

[20]  T. Elsaesser,et al.  Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source. , 2007, Nano letters.

[21]  Nader A. Issa,et al.  Optical Nanofocusing on Tapered Metallic Waveguides , 2007 .

[22]  A. Dereux,et al.  Efficient unidirectional nanoslit couplers for surface plasmons , 2007, cond-mat/0703407.

[23]  N. Halas,et al.  Nano-optics from sensing to waveguiding , 2007 .

[24]  Improved focused ion beam fabrication of near-field apertures using a silicon nitride membrane. , 2008, Optics letters.

[25]  Ewold Verhagen,et al.  Nanofocusing in laterally tapered plasmonic waveguides. , 2008, Optics express.

[26]  J. Homola Surface plasmon resonance sensors for detection of chemical and biological species. , 2008, Chemical reviews.

[27]  Tim H. Taminiau,et al.  Optical antennas direct single-molecule emission , 2008 .

[28]  Lukas Novotny,et al.  Optical Antennas , 2009 .

[29]  Xue-Wen Chen,et al.  Highly efficient interfacing of guided plasmons and photons in nanowires. , 2009, Nano letters.

[30]  Qiwen Zhan,et al.  Plasmonic lens made of multiple concentric metallic rings under radially polarized illumination. , 2009, Nano letters.

[31]  Sang‐Hyun Oh,et al.  Ultrasmooth Patterned Metals for Plasmonics and Metamaterials , 2009, Science.

[32]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[33]  Prashant Nagpal,et al.  Three-dimensional plasmonic nanofocusing. , 2010, Nano letters.

[34]  Byoungho Lee,et al.  Review on subwavelength confinement of light with plasmonics , 2010 .

[35]  Byoungho Lee,et al.  Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens. , 2010, Nano letters.

[36]  Marco Lazzarino,et al.  Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons. , 2010, Nature Nanotechnology.

[37]  Prashant Nagpal,et al.  Template-stripped smooth Ag nanohole arrays with silica shells for surface plasmon resonance biosensing. , 2011, ACS nano.

[38]  Timothy W Johnson,et al.  Monolithic integration of continuously tunable plasmonic nanostructures. , 2011, Nano letters.

[39]  L. Novotný,et al.  Antennas for light , 2011 .

[40]  D. F. Ogletree,et al.  Hyperspectral nanoscale imaging on dielectric substrates with coaxial optical antenna scan probes , 2011, CLEO: 2011 - Laser Science to Photonic Applications.

[41]  Reuven Gordon,et al.  Extraordinary optical transmission brightens near-field fiber probe. , 2011, Nano letters.

[42]  Andrea Toma,et al.  Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing SERS structures , 2011 .

[43]  L. Hesselink,et al.  Ultra-high resolution resonant C-shaped aperture nano-tip. , 2011, Optics express.

[44]  Sang‐Hyun Oh,et al.  Engineering metallic nanostructures for plasmonics and nanophotonics , 2012, Reports on progress in physics. Physical Society.

[45]  M. Fleischer Near-field scanning optical microscopy nanoprobes , 2012 .

[46]  Lukas Novotny,et al.  Highly reproducible near-field optical imaging with sub-20-nm resolution based on template-stripped gold pyramids. , 2012, ACS nano.

[47]  Ming C. Wu,et al.  Nanofocusing in a metal–insulator–metal gap plasmon waveguide with a three-dimensional linear taper , 2012, Nature Photonics.

[48]  R. Olmon,et al.  Light on the Tip of a Needle: Plasmonic Nanofocusing for Spectroscopy on the Nanoscale. , 2012, The journal of physical chemistry letters.

[49]  A. Polman,et al.  Dispersive ground plane core-shell type optical monopole antennas fabricated with electron beam induced deposition. , 2012, ACS nano.