GÖDEL'S INCOMPLETENESS THEOREM AND THE PHILOSOPHY OF OPEN SYSTEMS
暂无分享,去创建一个
[1] F. I. G. RAWLINS. Gödel's Theorem , 1960, Nature.
[2] David Hilbert. Neubegründung der Mathematik. Erste Mitteilung , 1922 .
[3] G. Cambiano. Platone e le tecniche , 1971 .
[4] Jonathan Barnes,et al. Aristotle's Theory of Demonstration , 1969 .
[5] Carl Hewitt. Metacritique of McDermott and the logicist approach , 1987 .
[6] Hilary Putnam,et al. The Philosophy of Mathematics: , 2019, The Mathematical Imagination.
[7] Paola Mello,et al. Objects as Communicating Prolog Units , 1987, ECOOP.
[8] Henry M. Sheffer. Principia Mathematica. Whitehead, Alfred North , Russell, Bertrand , 1926 .
[9] Robin Milner,et al. Communication and concurrency , 1989, PHI Series in computer science.
[10] William F. Clocksin,et al. Programming in Prolog , 1987, Springer Berlin Heidelberg.
[11] L. Wittgenstein. Tractatus Logico-Philosophicus , 2021, Nordic Wittgenstein Review.
[12] Solomon Feferman,et al. Incompleteness along paths in progressions of theories , 1962, Journal of Symbolic Logic.
[13] P. Bernays,et al. Grundlagen der Mathematik , 1934 .
[14] Carl Hewitt,et al. Open Information Systems Semantics for Distributed Artificial Intelligence , 1991, Artif. Intell..
[15] Paul Bernays. Philosophy of mathematics: On platonism in mathematics , 1984 .
[16] M. Dummett. Frege: Philosophy of Language , 1973 .
[17] R. H.,et al. The Principles of Mathematics , 1903, Nature.
[18] A. R. Turquette,et al. Logic, Semantics, Metamathematics , 1957 .
[19] K. Schutte. Review: Paul Bernays, Die Philosophie der Mathematik und die Hilbertsche Beweistheorie , 1978 .
[20] E. Zermelo. Über den Begriff der Definitheit in der Axiomatik , .
[21] Daniel G. Bobrow,et al. Vulcan: Logical Concurrent Objects , 1987, Research Directions in Object-Oriented Programming.
[22] F. Ramsey. The foundations of mathematics , 1932 .
[23] Kurt Gödel,et al. On a hitherto unexploited extension of the finitary standpoint , 1980, J. Philos. Log..
[24] P. Hertz. Über Axiomensysteme für beliebige Satzsysteme , .
[25] D. Hilbert. Die Grundlegung der elementaren Zahlenlehre , 1931 .
[26] G. B. M.. Principia Mathematica , 1911, Nature.
[27] D. Isaacson,et al. Arithmetical truth and hidden higher-order concepts , 1985, Logic Colloquium.
[28] B. Russell,et al. Principia Mathematica Vol. I , 1910 .
[29] C. A. R. Hoare,et al. Communicating sequential processes , 1978, CACM.
[30] Kurt Gödel,et al. On Formally Undecidable Propositions of Principia Mathematica and Related Systems , 1966 .
[31] H. Arbeláez,et al. Korth cm. International business : environment and management. Prentice hall, inc, englewood cliffs, 1985, 2a ed , 1985 .
[32] Warren D. Goldfarb,et al. Logic in the twenties: the nature of the quantifier , 1979, Journal of Symbolic Logic.
[33] J. Heijenoort. Begriffsschrift, a formula language, modeled upon that of arithmetic, for pure thought GOTTLOB FREGE(1879) , 1970 .
[34] K. Gödel. Philosophy of mathematics: Russell's mathematical logic , 1984 .
[35] On Herr Peano's Begriffsschrift and my own , 1969 .
[36] Gerhard Barth,et al. Reasoning Objects with Dynamic Knowledge Bases , 1989, EPIA.