Complex Quantum Network Manifolds in Dimension d > 2 are Scale-Free

In quantum gravity, several approaches have been proposed until now for the quantum description of discrete geometries. These theoretical frameworks include loop quantum gravity, causal dynamical triangulations, causal sets, quantum graphity, and energetic spin networks. Most of these approaches describe discrete spaces as homogeneous network manifolds. Here we define Complex Quantum Network Manifolds (CQNM) describing the evolution of quantum network states, and constructed from growing simplicial complexes of dimension . We show that in d = 2 CQNM are homogeneous networks while for d > 2 they are scale-free i.e. they are characterized by large inhomogeneities of degrees like most complex networks. From the self-organized evolution of CQNM quantum statistics emerge spontaneously. Here we define the generalized degrees associated with the -faces of the -dimensional CQNMs, and we show that the statistics of these generalized degrees can either follow Fermi-Dirac, Boltzmann or Bose-Einstein distributions depending on the dimension of the -faces.

[1]  R. Sorkin,et al.  Classical sequential growth dynamics for causal sets , 1999, gr-qc/9904062.

[2]  Guido Caldarelli,et al.  Hyperbolicity Measures "Democracy" in Real-World Networks , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  G. Petri,et al.  Homological scaffolds of brain functional networks , 2014, Journal of The Royal Society Interface.

[4]  Ginestra Bianconi Quantum statistics in complex networks. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  Sergey N. Dorogovtsev,et al.  Critical phenomena in complex networks , 2007, ArXiv.

[6]  M. Farber,et al.  Random Simplicial Complexes , 2014, 1412.5805.

[7]  Astrid Eichhorn,et al.  Spectral dimension in causal set quantum gravity , 2013, 1311.2530.

[8]  Reconstructing the universe , 2005, hep-th/0505154.

[9]  Gianluca Calcagni,et al.  Probing the quantum nature of spacetime by diffusion , 2013, 1304.7247.

[10]  Amin Vahdat,et al.  Hyperbolic Geometry of Complex Networks , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  C. Trugenberger Quantum gravity as an information network self-organization of a 4D universe , 2015, 1501.01408.

[12]  A. Barabasi,et al.  Bose-Einstein condensation in complex networks. , 2000, Physical review letters.

[13]  G. Vojta,et al.  Fractal Concepts in Surface Growth , 1996 .

[14]  Bak,et al.  Punctuated equilibrium and criticality in a simple model of evolution. , 1993, Physical review letters.

[15]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[16]  Alessandro Vespignani,et al.  Dynamical Processes on Complex Networks , 2008 .

[17]  David Wilkinson,et al.  Invasion percolation: a new form of percolation theory , 1983 .

[18]  Dmitri V. Krioukov,et al.  Exponential random simplicial complexes , 2015, 1502.05032.

[19]  Alessandro Vespignani,et al.  Evolution of Networks-From Biological Nets to the Internet and WWW S N Dorogovtsev and J F F Mendes , 2004 .

[20]  Mehran Kardar,et al.  Statistical physics of particles , 2007 .

[21]  Konstantin Mischaikow,et al.  Complex contagions on noisy geometric networks , 2014, ArXiv.

[22]  Copenhagen,et al.  Emergence of a 4D world from causal quantum gravity. , 2004, Physical review letters.

[23]  Carlo Rovelli,et al.  Loop space representation of quantum general relativity , 1988 .

[24]  C. Rovelli,et al.  Covariant Loop Quantum Gravity , 2014 .

[25]  Mark Newman,et al.  Networks: An Introduction , 2010 .

[26]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[27]  Frank Antonsen Random graphs as a model for pregeometry , 1994 .

[28]  Matthew Kahle Topology of random simplicial complexes: a survey , 2013, 1301.7165.

[29]  G. Bianconi,et al.  Complex quantum network geometries: Evolution and phase transitions. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  Iraj Saniee,et al.  Large-scale curvature of networks. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  Luca Weisz,et al.  The Life Of The Cosmos , 2016 .

[32]  A. Barabasi,et al.  Fractal Concepts in Surface Growth: Frontmatter , 1995 .

[33]  Guido Caldarelli,et al.  Scale-Free Networks , 2007 .

[34]  Marián Boguñá,et al.  Navigability of Complex Networks , 2007, ArXiv.

[35]  Shilpa Chakravartula,et al.  Complex Networks: Structure and Dynamics , 2014 .

[36]  Robert D. Kleinberg Geographic Routing Using Hyperbolic Space , 2007, IEEE INFOCOM 2007 - 26th IEEE International Conference on Computer Communications.

[37]  Ginestra Bianconi,et al.  Emergent Complex Network Geometry , 2014, Scientific Reports.

[38]  T. Di Matteo,et al.  Complex networks on hyperbolic surfaces , 2004, cond-mat/0408443.

[39]  T. Aste,et al.  Exploring complex networks via topological embedding on surfaces. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[40]  M. Cortês,et al.  The universe as a process of unique events , 2013, 1307.6167.

[41]  M. Cortês,et al.  Quantum energetic causal sets , 2013, 1308.2206.

[42]  A. F. Adams,et al.  The Survey , 2021, Dyslexia in Higher Education.

[43]  Martin T. Dove Structure and Dynamics , 2003 .

[44]  Albert-László Barabási,et al.  Evolution of Networks: From Biological Nets to the Internet and WWW , 2004 .

[45]  Simone Severini,et al.  Quantum graphity: A model of emergent locality , 2008, 0801.0861.

[46]  Francesco Vaccarino,et al.  Topological Strata of Weighted Complex Networks , 2013, PloS one.

[47]  Ginestra Bianconi,et al.  Growing Cayley trees described by a Fermi distribution. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[48]  Simone Severini,et al.  Quantum bose-hubbard model with an evolving graph as a toy model for emergent spacetime , 2009, 0911.5075.

[49]  Marián Boguñá,et al.  Network Cosmology , 2012, Scientific Reports.

[50]  Carlo Rovelli,et al.  Discreteness of area and volume in quantum gravity [Nucl. Phys. B 442 (1995) 593] , 1994, gr-qc/9411005.

[51]  Henrik Jeldtoft Jensen,et al.  Self-Organized Criticality: Emergent Complex Behavior in Physical and Biological Systems , 1998 .