Continuum mechanics simulations of NiO/Ni–YSZ composites during reduction and re-oxidation

[1]  Mikko Pihlatie,et al.  Testing and improving the redox stability of Ni-based solid oxide fuel cells , 2009 .

[2]  Mogens Bjerg Mogensen,et al.  Redox stability of SOFC: Thermal analysis of Ni-YSZ composites , 2009 .

[3]  M. Mogensen,et al.  Mechanical properties of NiO/Ni–YSZ composites depending on temperature, porosity and redox cycling , 2009 .

[4]  Mogens Bjerg Mogensen,et al.  Dimensional Behavior of Ni─YSZ Composites during Redox Cycling , 2009 .

[5]  Boris Iwanschitz,et al.  Fundamental mechanisms limiting solid oxide fuel cell durability , 2008 .

[6]  Robert Danzer,et al.  Fracture statistics of ceramics – Weibull statistics and deviations from Weibull statistics , 2007 .

[7]  Mogens Bjerg Mogensen,et al.  Ni–YSZ Solid Oxide Fuel Cell Anode Behavior Upon Redox Cycling Based on Electrical Characterization , 2007 .

[8]  Dimitris Sarantaridis,et al.  Redox Cycling of Ni‐Based Solid Oxide Fuel Cell Anodes: A Review , 2007 .

[9]  J. Sehested,et al.  Sintering of nickel catalysts: Effects of time, atmosphere, temperature, nickel-carrier interactions, and dopants , 2006 .

[10]  A. Domínguez-Rodríguez,et al.  Influence of oxidation on the high-temperature mechanical properties of zirconia/nickel cermets , 2006 .

[11]  T. Langdon Grain boundary sliding revisited: Developments in sliding over four decades , 2006 .

[12]  Mogens Bjerg Mogensen,et al.  The Mechanism Behind Redox Instability of Anodes in High-Temperature SOFCs , 2005 .

[13]  Edgar Lara-Curzio,et al.  Mechanical properties of tape cast nickel-based anode materials for solid oxide fuel cells before and after reduction in hydrogen , 2004 .

[14]  Jens K. Nørskov,et al.  Sintering of nickel steam-reforming catalysts: effects of temperature and steam and hydrogen pressures , 2004 .

[15]  Seetharama C. Deevi,et al.  A review on the status of anode materials for solid oxide fuel cells , 2003 .

[16]  S. Horibe,et al.  Analysis of non-elastic strain produced in zirconia ceramics , 2003 .

[17]  S. Horibe,et al.  Strain Rate Dependence of Tensile Behavior and Environmental Effect in Zirconia Ceramics , 2003 .

[18]  A. Chokshi Diffusion, diffusion creep and grain growth characteristics of nanocrystalline and fine-grained monoclinic, tetragonal and cubic zirconia , 2003 .

[19]  S. Horibe,et al.  Cyclic deformation and crack growth in zirconia ceramics , 2001 .

[20]  S. Horibe,et al.  The effect of anelasticity and phase transformation on crack growth in Y-TZP ceramics , 2001 .

[21]  M. Schütze,et al.  Investigation of the Mechanical Properties of Oxide Scales on Nickel and TiAl , 2001 .

[22]  A. Atkinson,et al.  Mechanical behaviour of ceramic oxygen ion-conducting membranes , 2000 .

[23]  A. Domínguez-Rodríguez,et al.  High temperature mechanical characteristics of superplastic yttria-stabilized zirconia. An examination of the flow process , 2000 .

[24]  Frank Tietz,et al.  Nickel coarsening in annealed Ni/8YSZ anode substrates for solid oxide fuel cells , 2000 .

[25]  S. Horibe,et al.  Temperature dependence of anelastic behavior in 3Y-TZP ceramics , 1997 .

[26]  A. W. Harris,et al.  The re-oxidation of pre-formed nickel oxide scales , 1993 .

[27]  J. Nicholls,et al.  Application of fracture mechanics to failure of surface oxide scales , 1988 .

[28]  Per Kofstad,et al.  High Temperature Corrosion , 1988 .

[29]  A. Domínguez-Rodríguez,et al.  Diffusional and dislocation creep of NiO polycrystals , 1987 .

[30]  H. Atkinson Evolution of grain structure in nickel oxide scales , 1987 .

[31]  M. Schütze The healing behavior of protective oxide scales on heat-resistant steels after cracking under tensile strain , 1986 .

[32]  A. Domínguez-Rodríguez,et al.  Diffusion and creep: Application to deformation maps on NiO , 1986 .

[33]  A. Atkinson Transport processes during the growth of oxide films at elevated temperature , 1985 .

[34]  M. Ashby,et al.  Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics , 1982 .

[35]  R. Farraro,et al.  Temperature dependence of the Young’s modulus and shear modulus of pure nickel, platinum, and molybdenum , 1977 .

[36]  A. Evans,et al.  The mechanical properties of nickel oxide and their relationship to the morphology of thick oxide scales formed on nickel , 1972 .

[37]  I. A. Menzies,et al.  Observations on the mechanical properties of nickel oxide scales , 1967 .

[38]  Robert L. Coble,et al.  A Model for Boundary Diffusion Controlled Creep in Polycrystalline Materials , 1963 .

[39]  Conyers Herring,et al.  Diffusional Viscosity of a Polycrystalline Solid , 1950 .

[40]  Gérard Delette,et al.  A numerical tool to estimate SOFC mechanical degradation: Case of the planar cell configuration , 2008 .

[41]  A. Domínguez-Rodríguez,et al.  A critical assessment of the dislocation-driven model for superplasticity in yttria tetragonal zirconia polycrystals , 2008 .

[42]  Robert Danzer,et al.  Some notes on the correlation between fracture and defect statistics: Are Weibull statistics valid for very small specimens? , 2006 .

[43]  R. Haugsrud On the high-temperature oxidation of nickel , 2003 .

[44]  A. Domínguez-Rodríguez,et al.  High-temperature mechanical properties of zirconia/nickel composites , 2003 .

[45]  R. Vaßen,et al.  Modelling of the agglomeration of Ni-particles in anodes of solid oxide fuel cells , 2001 .

[46]  T. Langdon,et al.  Creep of ceramics , 1983 .

[47]  B. S. Berry,et al.  Anelastic Relaxation in Crystalline Solids , 1972 .