Line segment crack recovery from incomplete boundary data

We are concerned with non-destructive control issues, namely detection and recovery of cracks in a planar (2D) isotropic conductor from partial boundary measurements of a solution to the Laplace–Neumann problem. We first build an extension of that solution to the whole boundary, using constructive approximation techniques in classes of analytic and meromorphic functions, and then use localization algorithms based on boundary computations of the reciprocity gap.

[1]  M. Kreĭn,et al.  ANALYTIC PROPERTIES OF SCHMIDT PAIRS FOR A HANKEL OPERATOR AND THE GENERALIZED SCHUR-TAKAGI PROBLEM , 1971 .

[2]  H. Begehr Complex Analytic Methods for Partial Differential Equations: An Introductory Text , 1994 .

[3]  Jonathan R. Partington,et al.  Problems of Adamjan—Arov—Krein Type on Subsets of the Circle and Minimal Norm Extensions , 2000 .

[4]  Huy Duong Bui,et al.  Sur l'identification de fissures planes via le concept d'écart à la réciprocité en élasticité , 1997 .

[5]  W. Rudin Real and complex analysis , 1968 .

[6]  H. Helson Harmonic Analysis , 1983 .

[7]  S. Power Hankel Operators on Hilbert Space , 1980 .

[8]  Michael Pidcock,et al.  Crack detection using electrostatic measurements , 2001 .

[9]  Fadil Santosa,et al.  A computational algorithm to determine cracks from electrostatic boundary measurements , 1991 .

[10]  J. Partington,et al.  Hardy approximation to L 8 functions on subsets of the circle , 1996 .

[11]  J. Partington,et al.  Approximation problems and representations of Hardy spaces in circular domains , 1999 .

[12]  K. Hoffman Banach Spaces of Analytic Functions , 1962 .

[13]  Kurt Bryan,et al.  A uniqueness result concerning the identification of a collection of cracks from finitely many electrostatic boundary measurements , 1992 .

[14]  E. Saff,et al.  How can the meromorphic approximation help to solve some 2D inverse problems for the Laplacian , 1999 .

[15]  A constrained approximation problem arising in parameter identification , 2002 .

[16]  J. Leblond,et al.  Parameter identification for Laplace equation and approximation in Hardy classes , 2003 .

[17]  F. Mandréa,et al.  Comportement asymptotique des pôles d'approximants rationnels et méromorphes : application aux problèmes inverses du Laplacien 2D , 2001 .

[18]  Avner Friedman,et al.  Determining Cracks by Boundary Measurements , 1989 .

[19]  A. B. Abda,et al.  Identification of planar cracks by complete overdetermined data: inversion formulae , 1996 .

[20]  Giovanni Alessandrini,et al.  Determining 2-dimensional cracks in 3-dimensional bodies: Uniqueness and stability , 1997 .