Integration of Hydrogen Energy Technologies in Autonomous Power Systems

The never-ending stories on an alternative energy supply for a cleaner environment, recently related with efforts to decrease global CO2 emissions, has been revived by the steep increase in oil prices (over 100$/barrel) and the parallel controversy about the potential and public acceptance of nuclear energy. Thus, it is now the right time for the scientific community and energy producers to synthesise their knowledge in order to achieve realistic solutions towards a cleaner energy system. Taking into account concerns that are related to environmental protection, security in the energy supply, and the utilisation of energy sources that promote the economic growth of societies, the concept of a “hydrogen economy era” is moving beyond the realm of scientists and engineers into the lexicon of political and business leaders. Interest in hydrogen, the simplest and most abundant element in the universe, is also emerging due to technical advances in fuel cells — the potential successors to batteries in portable electronics, power plants, and the internal combustion engine (Marban et al., 2007).

[1]  S. Yaman Pyrolysis of biomass to produce fuels and chemical feedstocks , 2004 .

[2]  U. Stimming,et al.  Recent anode advances in solid oxide fuel cells , 2007 .

[3]  Allen M. Hermann,et al.  Bipolar plates for PEM fuel cells: A review , 2005 .

[4]  Christian Sattler,et al.  Hydrogen production by solar reforming of natural gas: A cost study" Proceedings of ASME ISEC 2004 Solar Conference July 11-14, 2004, Portland Oregon, USA. , 2004 .

[5]  Andrew Dicks,et al.  Hydrogen from coal: Production and utilisation technologies , 2006 .

[6]  François Werkoff,et al.  On the production of hydrogen via alkaline electrolysis during off-peak periods , 2007 .

[7]  Lauro T. Kubota,et al.  Electrochemical Properties of [Ru(edta)(H2O)]−Immobilized on a Zirconium(IV) Oxide-Coated Silica Gel Surface , 1996 .

[8]  J. Gore,et al.  A Review of Heat Transfer Issues in Hydrogen Storage Technologies , 2005 .

[9]  James Larminie,et al.  Fuel Cell Systems Explained , 2000 .

[10]  Jeffrey W. Fergus,et al.  Oxide anode materials for solid oxide fuel cells , 2006 .

[11]  M. Dornheim,et al.  Tailoring Hydrogen Storage Materials Towards Application , 2006 .

[12]  Hartmut Wendt,et al.  Tecnologia de células a combustível , 2000 .

[13]  Iain Staffell,et al.  Cost targets for domestic fuel cell CHP , 2008 .

[14]  V. Ismet Ugursal,et al.  The financial viability of an SOFC cogeneration system in single-family dwellings , 2006 .

[15]  Adam Hawkes,et al.  Solid oxide fuel cell systems for residential micro-combined heat and power in the UK: Key economic drivers , 2005 .

[16]  Emilio Sanchez-Cortezon,et al.  The evolution of the performance of alkaline fuel cells with circulating electrolyte , 2004 .

[17]  Nigel M. Sammes,et al.  Phosphoric acid fuel cells: Fundamentals and applications , 2004 .

[18]  S. Grigoriev,et al.  Pure hydrogen production by PEM electrolysis for hydrogen energy , 2006 .

[19]  A. Züttel,et al.  Hydrogen-storage materials for mobile applications , 2001, Nature.

[20]  Ulrich Müller,et al.  Hydrogen Adsorption in Metal–Organic Frameworks: Cu‐MOFs and Zn‐MOFs Compared , 2006 .

[21]  Mohamed Eddaoudi,et al.  Highly Porous and Stable Metal−Organic Frameworks: Structure Design and Sorption Properties , 2000 .

[22]  S. Litster,et al.  PEM fuel cell electrodes , 2004 .

[23]  D Gielen,et al.  Prospects for hydrogen and fuel cells , 2005 .

[24]  Charles C. Sorrell,et al.  Solar-hydrogen : Unresolved problems in solid-state science , 2005 .

[25]  Osamu Kobayashi,et al.  Mass production cost of PEM fuel cell by learning curve , 2004 .

[26]  Theocharis Tsoutsos,et al.  Integration of hydrogen energy technologies in stand-alone power systems analysis of the current potential for applications , 2006 .

[27]  K Pehr,et al.  Liquid hydrogen for motor vehicles — the world's first public LH2 filling station , 2001 .

[28]  E. Antolini Platinum-based ternary catalysts for low temperature fuel cells: Part II. Electrochemical properties , 2007 .

[29]  A. Stams,et al.  Substrate and product inhibition of hydrogen production by the extreme thermophile, Caldicellulosiruptor saccharolyticus. , 2003, Biotechnology and bioengineering.

[30]  M. Hirscher,et al.  Metal hydride materials for solid hydrogen storage: a review , 2007 .

[31]  A. Boudghene Stambouli,et al.  Fuel cells, an alternative to standard sources of energy , 2002 .

[32]  A. Załuska,et al.  Structure, catalysis and atomic reactions on the nano-scale: a systematic approach to metal hydrides for hydrogen storage , 2001 .

[33]  Mathias Schulze,et al.  LONG TERM OPERATION OF AFC ELECTRODES WITH CO2 CONTAINING GASES , 2004 .

[34]  K. Yamashita,et al.  Integrated Energy Systems for the 21st Century: Coal Gasification for Co-producing Hydrogen, Electricity and Liquid Fuels , 2003 .

[35]  Ward Worthy Injection Molding of Magnesium Alloys , 1988 .

[36]  M. O'keeffe,et al.  Design and synthesis of an exceptionally stable and highly porous metal-organic framework , 1999, Nature.

[37]  Siyu Ye,et al.  Recent advances in activity and durability enhancement of Pt/C catalytic cathode in PEMFC: Part II: Degradation mechanism and durability enhancement of carbon supported platinum catalyst , 2007 .

[38]  Xianguo Li,et al.  Review of bipolar plates in PEM fuel cells: Flow-field designs , 2005 .

[39]  Michael O'Keeffe,et al.  Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage , 2002, Science.

[40]  Viral S. Mehta,et al.  Review and analysis of PEM fuel cell design and manufacturing , 2003 .

[41]  M. Farooque,et al.  Carbonate fuel cell materials , 2006 .

[42]  G. Sandrock A panoramic overview of hydrogen storage alloys from a gas reaction point of view , 1999 .

[43]  Ned Djilali,et al.  An assessment of alkaline fuel cell technology , 2002 .

[44]  K. Riahi,et al.  The hydrogen economy in the 21st century: a sustainable development scenario , 2003 .

[45]  Xuan Cheng,et al.  A review of PEM hydrogen fuel cell contamination: Impacts, mechanisms, and mitigation , 2007 .

[46]  M. Farooque,et al.  Carbonate fuel cells: Milliwatts to megawatts , 2006 .

[47]  Thiokol Propulsion High-Pressure Conformable Hydrogen Storage for Fuel Cell Vehicles , 2000 .

[48]  Lei Zhang,et al.  Progress in preparation of non-noble electrocatalysts for PEM fuel cell reactions , 2006 .

[49]  Wim Turkenburg,et al.  A comparison of electricity and hydrogen production systems with CO2 capture and storage. Part A: Review and selection of promising conversion and capture technologies , 2006 .

[50]  S. Dunn Hydrogen Futures: Toward a Sustainable Energy System , 2001 .

[51]  George Crabtree,et al.  The hydrogen economy , 2006, IEEE Engineering Management Review.

[52]  H. Abaoud,et al.  Operational experience of a 1 kW PAFC stack , 2000 .

[53]  G. Marbán,et al.  Towards the hydrogen economy , 2007 .

[54]  T. R. Ralph Proton Exchange Membrane Fuel Cells PROGRESS IN COST REDUCTION OF THE KEY COMPONENTS , 1997 .

[55]  M Momirlan,et al.  Current status of hydrogen energy , 2002 .

[56]  Omar M Yaghi,et al.  Strategies for hydrogen storage in metal--organic frameworks. , 2005, Angewandte Chemie.

[57]  R. Kandiyoti,et al.  Pyrolysis: Thermal Breakdown of Solid Fuels in a Gaseous Environment , 2006 .

[58]  F. Darkrim,et al.  Review of hydrogen storage by adsorption in carbon nanotubes , 2002 .

[59]  K. Thomas,et al.  Hydrogen adsorption and storage on porous materials , 2007 .

[60]  S. Srinivasan,et al.  Fuel Cells: From Fundamentals to Applications , 2006 .

[61]  A. Duigou,et al.  Hydrogen production using the sulfur-iodine cycle coupled to a VHTR : An overview , 2006 .

[62]  S. Haile Fuel cell materials and components , 2003 .

[63]  F. R. Foulkes,et al.  Fuel Cell Handbook , 1989 .

[64]  Ulrich Eberle,et al.  Hydrogen storage: the remaining scientific and technological challenges. , 2007, Physical Chemistry, Chemical Physics - PCCP.

[65]  D. Wilkinson,et al.  Aging mechanisms and lifetime of PEFC and DMFC , 2004 .

[66]  L. Carrette,et al.  Fuel Cells - Fundamentals and Applications , 2001 .

[67]  Wan Ramli Wan Daud,et al.  Challenges and future developments in proton exchange membrane fuel cells , 2006 .

[68]  R. D. Venter,et al.  Modelling of stationary bulk hydrogen storage systems , 1997 .

[69]  Rakesh Agrawal,et al.  Hydrogen Economy - An Opportunity for Chemical Engineers? , 2005 .

[70]  S. Srinivasan,et al.  Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000 Part I. Fundamental scientific aspects , 2001 .

[71]  H. Gasteiger,et al.  Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs , 2005 .

[72]  Charles E. Bessey Plant Life, Considered with Reference to Form and Function , 1898 .

[73]  Mark C. Williams,et al.  U.S. distributed generation fuel cell program , 2004 .

[74]  Wim Turkenburg,et al.  A comparison of electricity and hydrogen production systems with CO2 capture and storage—Part B: Chain analysis of promising CCS options , 2007 .

[75]  Ulrich Eberle,et al.  Fuel cell vehicles: Status 2007 , 2007 .

[76]  J. Cotrell,et al.  Modeling the Feasibility of Using Fuel Cells and Hydrogen Internal Combustion Engines in Remote Renewable Energy Systems , 2003 .

[77]  C S Sunandana,et al.  Nanomaterials for hydrogen storage , 2007 .

[78]  Gao Qing Lu,et al.  Solid acid membranes for high temperature (¿140° C) proton exchange membrane fuel cells , 2005 .

[79]  R. T. Yang,et al.  Hydrogen storage on platinum nanoparticles doped on superactivated carbon , 2007 .

[80]  A. Seayad,et al.  Recent Advances in Hydrogen Storage in Metal‐Containing Inorganic Nanostructures and Related Materials , 2004 .

[81]  Omar M Yaghi,et al.  Exceptional H2 saturation uptake in microporous metal-organic frameworks. , 2006, Journal of the American Chemical Society.

[82]  J. O’Brien,et al.  Progress in high-temperature electrolysis for hydrogen production using planar SOFC technology , 2005 .

[83]  James Larminie,et al.  Fuel Cell Systems Explained: Larminie/Fuel Cell Systems Explained , 2003 .

[84]  Hong Liu,et al.  Effect of pH on hydrogen production from glucose by a mixed culture. , 2002, Bioresource technology.

[85]  Daniel M. Kammen,et al.  Fuel cell system economics: comparing the costs of generating power with stationary and motor vehicle PEM fuel cell systems , 2004 .

[86]  D. Wilkinson,et al.  Degradation of polymer electrolyte membranes , 2006 .

[87]  K. Kendall,et al.  Cycling of three solid oxide fuel cell types , 2007 .

[88]  K. Lee,et al.  Overview of the development of CO-tolerant anode electrocatalysts for proton-exchange membrane fuel cells , 2006 .

[89]  B. Bogdanovic,et al.  Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials , 1997 .

[90]  George E. Marnellos,et al.  From biomass to electricity through integrated gasification/SOFC system-optimization and energy balance , 2007 .

[91]  Jesse S. Wainright,et al.  Conductivity of PBI Membranes for High-Temperature Polymer Electrolyte Fuel Cells , 2004 .

[92]  Robert van den Hoed,et al.  Characterising fuel cell technology: Challenges of the commercialisation process , 2007 .

[93]  J. B. Taylor,et al.  Technical and economic assessment of methods for the storage of large quantities of hydrogen , 1986 .

[94]  Cole Boulevard,et al.  PHOTOELECTROCHEMICAL SYSTEMS FOR HYDROGEN PRODUCTION , 2002 .

[95]  David P. Wilkinson,et al.  High temperature PEM fuel cells , 2006 .

[96]  Youngjin Park,et al.  Development of a 50 kW PAFC power generation system , 2002 .

[97]  Banglin Chen,et al.  Cover Picture: Strategies for Hydrogen Storage in Metal–Organic Frameworks / High H2 Adsorption in a Microporous Metal–Organic Framework with Open Metal Sites (Angew. Chem. Int. Ed. 30/2005) , 2005 .

[98]  B. Smitha,et al.  Solid polymer electrolyte membranes for fuel cell applications¿a review , 2005 .

[99]  Gang Chen,et al.  Size effects on the hydrogen storage properties of nanostructured metal hydrides: A review , 2007 .

[100]  Lawrence Pitt,et al.  Biohydrogen production: prospects and limitations to practical application , 2004 .

[101]  Yixin Lu,et al.  A solid oxide fuel cell system for buildings , 2007 .

[102]  Isa Bar-On,et al.  Technical cost analysis for PEM fuel cells , 2002 .

[103]  K. Sumathy,et al.  AN OVERVIEW OF HYDROGEN PRODUCTION FROM BIOMASS , 2006 .

[104]  R. Saxena,et al.  Thermo-chemical routes for hydrogen rich gas from biomass: A review , 2008 .

[105]  D. Mahajan,et al.  Metal bipolar plates for PEM fuel cell—A review , 2007 .

[106]  Bin Wang,et al.  Recent development of non-platinum catalysts for oxygen reduction reaction , 2005 .

[107]  G. Acres,et al.  Recent advances in fuel cell technology and its applications , 2001 .

[108]  Michael Stoukides,et al.  Solid-Electrolyte Membrane Reactors: Current Experience and Future Outlook , 2000 .

[109]  Siyu Ye,et al.  Recent advances in activity and durability enhancement of Pt/C catalytic cathode in PEMFC: Part I. Physico-chemical and electronic interaction between Pt and carbon support, and activity enhancement of Pt/C catalyst , 2007 .

[110]  Lei Zhang,et al.  A review of heat-treatment effects on activity and stability of PEM fuel cell catalysts for oxygen reduction reaction , 2007 .

[111]  A. Melis,et al.  Green alga hydrogen production: progress, challenges and prospects , 2002 .

[112]  K. Kendall,et al.  High temperature solid oxide fuel cells : fundamentals, design and applicatons , 2003 .

[113]  F. Wetzel,et al.  Improved handling of liquid hydrogen at filling stations : Review of six years' experience , 1998 .

[114]  M. Hirscher,et al.  Hydrogen storage in carbon nanotubes. , 2003, Journal of nanoscience and nanotechnology.