Nonautonomous rogue waves and 'catch' dynamics for the combined Hirota-LPD equation with variable coefficients

Abstract We study multi-rogue wave solutions of a Schr o ¨ dinger equation with higher-order terms employing the generalized Darboux transformation. Some properties of the nonautonomous rogue waves are investigated analytically for the combined Hirota–Lakshmanan–Porsezian–Daniel (LPD) equation. We consider the controllable behaviors of this nonautonomous rogue wave solution with the nonlinearity management function and gain/loss coefficient. It is reported that there are possibilities to ‘catch’ rogue waves through manipulating nonlinear function and gain/loss coefficient. Our approach can provide many possibilities to manipulate rogue waves and present the potential applications for the rogue wave phenomena.

[1]  Zhenya Yan,et al.  Vector financial rogue waves , 2011 .

[2]  W. M. Liu,et al.  Matter rogue wave in Bose-Einstein condensates with attractive atomic interaction , 2011, 1108.2328.

[3]  Chao-Qing Dai,et al.  Controllable optical rogue waves in the femtosecond regime. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  Zhenya Yan,et al.  Two-dimensional vector rogue wave excitations and controlling parameters in the two-component Gross–Pitaevskii equations with varying potentials , 2015 .

[5]  Guosheng Zhou,et al.  Exact multisoliton solutions of the higher-order nonlinear Schrödinger equation with variable coefficients. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  Guosheng Zhou,et al.  Dark soliton solution for higher-order nonlinear Schrödinger equation with variable coefficients , 2004 .

[7]  N. Akhmediev,et al.  Modulation instability and periodic solutions of the nonlinear Schrödinger equation , 1986 .

[8]  Zhenya Yan,et al.  Analytical three-dimensional bright solitons and soliton pairs in Bose-Einstein condensates with time-space modulation , 2009, 1009.3727.

[9]  Efim Pelinovsky,et al.  Physical Mechanisms of the Rogue Wave Phenomenon , 2003 .

[10]  P. G. Kevrekidis,et al.  Nonlinear waves in Bose–Einstein condensates: physical relevance and mathematical techniques , 2008, 0805.0761.

[11]  C. Sulem,et al.  The nonlinear Schrödinger equation : self-focusing and wave collapse , 2004 .

[12]  Chuan-Sheng Liu,et al.  Solitons in nonuniform media , 1976 .

[13]  T. Brooke Benjamin,et al.  The disintegration of wave trains on deep water Part 1. Theory , 1967, Journal of Fluid Mechanics.

[14]  B. Jalali,et al.  Optical rogue waves , 2007, Nature.

[15]  Li-Chen Zhao,et al.  Dynamics of nonautonomous rogue waves in Bose-Einstein condensate , 2013 .

[16]  Alan S. Osborne,et al.  THE FOURTEENTH 'AHA HULIKO' A HAWAIIAN WINTER WORKSHOP , 2005 .

[17]  Charles H. Townes,et al.  Self-trapping of optical beams , 1964 .

[18]  V. Shrira,et al.  Can bottom friction suppress ‘freak wave’ formation? , 2008, Journal of Fluid Mechanics.

[19]  B. Malomed,et al.  Spatiotemporal optical solitons , 2005 .

[20]  M. Shats,et al.  Capillary rogue waves. , 2010, Physical review letters.

[21]  F. Arecchi,et al.  Non-Gaussian statistics and extreme waves in a nonlinear optical cavity. , 2009, Physical review letters.

[22]  Zhenya Yan,et al.  Exact solutions to three-dimensional generalized nonlinear Schrödinger equations with varying potential and nonlinearities. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  Jingsong He,et al.  Designable Integrability of the Variable Coefficient Nonlinear Schrödinger Equations , 2010, 1008.2517.

[24]  L. Stenflo,et al.  Rogue waves in the atmosphere , 2009, Journal of Plasma Physics.

[25]  Karsten Trulsen,et al.  NOTE ON BREATHER TYPE SOLUTIONS OF THE NLS AS MODELS FOR FREAK-WAVES , 1999 .

[26]  Benjamin J. Eggleton,et al.  Photonics: Rogue waves surface in light , 2007, Nature.

[27]  Zhenya Yan,et al.  Three-dimensional rogue waves in nonstationary parabolic potentials. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  Zhenya Yan,et al.  Nonautonomous "rogons" in the inhomogeneous nonlinear Schrödinger equation with variable coefficients , 2010, 1009.3731.

[29]  V. Konotop,et al.  Matter rogue waves , 2009 .

[30]  N. Akhmediev,et al.  Waves that appear from nowhere and disappear without a trace , 2009 .

[31]  Adrian Ankiewicz,et al.  Rogue waves and rational solutions of the Hirota equation. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[32]  V. I. Bespalov,et al.  Filamentary Structure of Light Beams in Nonlinear Liquids , 1966 .

[33]  Jingsong He,et al.  Two kinds of rogue waves of the general nonlinear Schrödinger equation with derivative , 2012, 1202.0356.

[34]  Jiefang Zhang,et al.  Exact spatial similaritons and rogons in 2D graded-index waveguides. , 2010, Optics letters.

[35]  Yan‐Chow Ma,et al.  The Perturbed Plane‐Wave Solutions of the Cubic Schrödinger Equation , 1979 .

[36]  J. Soto-Crespo,et al.  Extreme waves that appear from nowhere: On the nature of rogue waves , 2009 .

[37]  J. Soto-Crespo,et al.  Rogue waves and rational solutions of the nonlinear Schrödinger equation. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[38]  Yan Wang,et al.  Extended nonlinear Schrödinger equation with higher-order odd and even terms and its rogue wave solutions. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[39]  B. Jalali,et al.  Active control of rogue waves for stimulated supercontinuum generation. , 2008, Physical review letters.