Estimation of Dynamic Assignment Matrices and OD Demands Using Adaptive Kalman Filtering

The purpose of this research was to develop a dynamic model for the on-line estimation and prediction of freeway users’ origin-destination (OD) matrices. In this paper, we present a Kalman Filtering algorithm that uses time-varying assignment matrices generated by using a mesoscopic traffic simulator. The use of a traffic simulator to predict time-varying travel time model parameters was shown to be promising for the determination of dynamic OD matrices for a freeway system. Moreover, the issues of using time-varying model parameters, effects of incorporating different sources of measurements and the use of adaptive estimation are addressed and investigated in this research.

[1]  Gang-Len Chang,et al.  Recursive estimation of time-varying origin-destination flows from traffic counts in freeway corridors , 1994 .

[2]  Rudi Hamerslag,et al.  IMPROVED KALMAN FILTERING APPROACH FOR ESTIMATING ORIGIN-DESTINATION MATRICES FOR FREEWAY CORRIDORS , 1994 .

[3]  Hai Yang,et al.  Estimation of origin-destination matrices from link traffic counts on congested networks , 1992 .

[4]  Moshe Ben-Akiva,et al.  ALTERNATIVE METHODS TO ESTIMATE ROUTE-LEVEL TRIP TABLES AND EXPAND ON-BOARD SURVEYS , 1985 .

[5]  Ennio Cascetta,et al.  Dynamic Estimators of Origin-Destination Matrices Using Traffic Counts , 1993, Transp. Sci..

[6]  Nancy L. Nihan,et al.  FIXED-POINT APPROACH TO ESTIMATING FREEWAY ORIGIN-DESTINATION MATRICES AND THE EFFECT OF ERRONEOUS DATA ON ESTIMATE PRECISION , 1992 .

[7]  B. Anderson,et al.  Optimal Filtering , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[8]  Nanne J. Van Der Zijpp,et al.  Dynamic Origin-Destination Matrix Estimation from Traffic Counts and Automated Vehicle Identification Data , 1997 .

[9]  Gary A. Davis,et al.  Application of Prediction-Error Minimization and Maximum Likelihood to Estimate Intersection O-D Matrices from Traffic Counts , 1989, Transp. Sci..

[10]  M. Cremer,et al.  A new class of dynamic methods for the identification of origin-destination flows , 1987 .

[11]  Sang Nguyen,et al.  A unified framework for estimating or updating origin/destination matrices from traffic counts , 1988 .

[12]  G. Davis,et al.  Recursive estimation of origin-destination matrices from input/output counts , 1987 .

[13]  Nanne J. Van Der Zijpp,et al.  Dynamic OD-Matrix Estimation from Traffic Counts and Automated Vehicle Identification Data , 1997 .

[14]  Michael G.H. Bell,et al.  The real time estimation of origin-destination flows in the presence of platoon dispersion , 1991 .

[15]  Hani S Mahmassani,et al.  DEVELOPMENT AND TESTING OF DYNAMIC TRAFFIC ASSIGNMENT AND SIMULATION PROCEDURES FOR ATIS/ATMS APPLICATIONS , 1994 .

[16]  William H. K. Lam,et al.  Estimation of an origin-destination matrix with random link choice proportions : a statistical approach , 1996 .

[17]  Moshe E. Ben-Akiva,et al.  Alternative Approaches for Real-Time Estimation and Prediction of Time-Dependent Origin-Destination Flows , 2000, Transp. Sci..