Streaming Reconstruction from Non-uniform Samples

We present an online algorithm for reconstructing a signal from a set of non-uniform samples. By representing the signal using compactly supported basis functions, we show how estimating the expansion coefficients using least-squares can be implemented in a streaming manner: as batches of samples over subsequent time intervals are presented, the algorithm forms an initial estimate of the signal over the sampling interval then updates its estimates over previous intervals. We give conditions under which this reconstruction procedure is stable and show that the least-squares estimates in each interval converge exponentially, meaning that the updates can be performed with finite memory with almost no loss in accuracy. We also discuss how our framework extends to more general types of measurements including time-varying convolution with a compactly supported kernel.

[1]  Hans G. Feichtinger,et al.  Theory and practice of irregular sampling , 2021, Wavelets.

[2]  J. Romberg,et al.  Improved bounds for the eigenvalues of prolate spheroidal wave functions and discrete prolate spheroidal sequences , 2020 .

[3]  N. I. Miridakis,et al.  Linear Estimation , 2018, Digital and Statistical Signal Processing.

[4]  D. Donev Prolate Spheroidal Wave Functions , 2017 .

[5]  José Luis Romero,et al.  Sampling theorems for shift-invariant spaces, Gabor frames, and totally positive functions , 2016, Inventiones mathematicae.

[6]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[7]  Stéphane Mallat,et al.  A Wavelet Tour of Signal Processing - The Sparse Way, 3rd Edition , 2008 .

[8]  Deanna Needell,et al.  Non-Asymptotic Theory of Random Matrices , 2006 .

[9]  Akram Aldroubi,et al.  Nonuniform Sampling and Reconstruction in Shift-Invariant Spaces , 2001, SIAM Rev..

[10]  Paul L. Butzer,et al.  An Introduction to Sampling Analysis , 2001 .

[11]  K. Gröchenig,et al.  Numerical and Theoretical Aspects of Nonuniform Sampling of Band-Limited Images , 2001 .

[12]  M. Unser Sampling-50 years after Shannon , 2000, Proceedings of the IEEE.

[13]  H. Feichtinger,et al.  Exact iterative reconstruction algorithm for multivariate irregularly sampled functions in spline-like spaces: The $L^p$-theory , 1998 .

[14]  Wen Chen,et al.  On Irregular Sampling in Wavelet Subspaces , 1997 .

[15]  Michael Unser,et al.  A general sampling theory for nonideal acquisition devices , 1994, IEEE Trans. Signal Process..

[16]  Y. Meyer Wavelets and Operators , 1993 .

[17]  K. Gröchenig RECONSTRUCTION ALGORITHMS IN IRREGULAR SAMPLING , 1992 .

[18]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[19]  Henrique S. Malvar,et al.  Signal processing with lapped transforms , 1992 .

[20]  Henry Stark,et al.  Iterative and one-step reconstruction from nonuniform samples by convex projections , 1990 .

[21]  F. Marvasti,et al.  Recovery of signals from nonuniform samples using iterative methods , 1989, IEEE International Symposium on Circuits and Systems,.

[22]  Henrique S. Malvar,et al.  The LOT: transform coding without blocking effects , 1989, IEEE Trans. Acoust. Speech Signal Process..

[23]  L. Carleson,et al.  The Collected Works of Arne Beurling , 1989 .

[24]  A. Papoulis,et al.  Generalized sampling expansion , 1977 .

[25]  Frederick J. Beutler,et al.  Sampling Theorems and Bases in a Hilbert Space , 1961, Inf. Control..

[26]  R. Duffin,et al.  A class of nonharmonic Fourier series , 1952 .