Theory and algorithms for efficient physically-based illumination

Author Jaakko Lehtinen Title Theory and Algorithms for Efficient Physically-Based Illumination Realistic image synthesis is one of the central fields of study within computer graphics. This thesis treats efficient methods for simulating light transport in situations where the incident illumination is produced by non-pointlike area light sources and distant illumination described by environment maps. We describe novel theory and algorithms for physicallybased lighting computations, and expose the design choices and tradeoffs on which the techniques are based. Two publications included in this thesis deal with precomputed light transport. These techniques produce interactive renderings of static scenes under dynamic illumination and full global illumination effects. This is achieved through sacrificing the ability to freely deform and move the objects in the scene. We present a comprehensive mathematical framework for precomputed light transport. The framework, which is given as an abstract operator equation that extends the well-known rendering equation, encompasses a significant amount of prior work as its special cases. We also present a particular method for rendering objects in low-frequency lighting environments, where increased efficiency is gained through the use of compactly supported function bases. Physically-based shadows from area and environmental light sources are an important factor in perceived image realism. We present two algorithms for shadow computation. The first technique computes shadows cast by low-frequency environmental illumination on animated objects at interactive rates without requiring difficult precomputation or a priori knowledge of the animations. Here the capability to animate is gained by forfeiting indirect illumination. Another novel shadow algorithm for off-line rendering significantly enhances a previous physically-based soft shadow technique by introducing an improved spatial hierarchy that alleviates redundant computations at the cost of using more memory. This thesis advances the state of the art in realistic image synthesis by introducing several algorithms that are more efficient than their predecessors. Furthermore, the theoretical contributions should enable the transfer of ideas from one particular application to others through abstract generalization of the underlying mathematical concepts. UDC 004.925, 004.925.3

[1]  E. J. Stollnitz,et al.  Wavelet Radiance , 1994 .

[2]  Peter-Pike J. Sloan,et al.  Local, deformable precomputed radiance transfer , 2005, SIGGRAPH 2005.

[3]  Peter-Pike J. Sloan,et al.  Clustered principal components for precomputed radiance transfer , 2003, ACM Trans. Graph..

[4]  Leonidas J. Guibas,et al.  Robust Monte Carlo methods for light transport simulation , 1997 .

[5]  R. Coifman,et al.  Fast wavelet transforms and numerical algorithms I , 1991 .

[6]  Wojciech Matusik,et al.  Acquisition and Rendering of Transparent and Refractive Objects , 2002, Rendering Techniques.

[7]  Steven K. Feiner,et al.  Fast object-precision shadow generation for area light sources using BSP trees , 1992, I3D '92.

[8]  Paul Debevec Rendering synthetic objects into real scenes: bridging traditional and image-based graphics with global illumination and high dynamic range photography , 2008, SIGGRAPH Classes.

[9]  H. Jensen,et al.  Wavelet importance sampling: efficiently evaluating products of complex functions , 2005, SIGGRAPH 2005.

[10]  Rui Wang,et al.  Eurographics Symposium on Rendering (2004) All-frequency Relighting of Non-diffuse Objects Using Separable Brdf Approximation , 2022 .

[11]  Pat Hanrahan,et al.  A rapid hierarchical radiosity algorithm , 1991, SIGGRAPH.

[12]  Donald P. Greenberg,et al.  An Efficient Radiosity Approach for Realistic Image Synthesis , 1986, IEEE Computer Graphics and Applications.

[13]  Serge J. Belongie,et al.  Structured importance sampling of environment maps , 2003, ACM Trans. Graph..

[14]  Philipp Slusallek,et al.  Radiosity and relaxation methods , 1994, IEEE Computer Graphics and Applications.

[15]  Harry Shum,et al.  Eurographics Symposium on Rendering (2004) All-frequency Precomputed Radiance Transfer for Glossy Objects , 2022 .

[16]  Donald P. Greenberg,et al.  A two-pass solution to the rendering equation: A synthesis of ray tracing and radiosity methods , 1987, SIGGRAPH.

[17]  Jan Kautz,et al.  Fast Arbitrary BRDF Shading for Low-Frequency Lighting Using Spherical Harmonics , 2002, Rendering Techniques.

[18]  Donald P. Greenberg,et al.  A progressive refinement approach to fast radiosity image generation , 1988, SIGGRAPH.

[19]  Pat Hanrahan,et al.  Wavelet radiosity , 1993, SIGGRAPH.

[20]  Edward Cutrell,et al.  Measuring the Perception of Visual Realism in Images , 2001, Rendering Techniques.

[21]  John Tran,et al.  All-frequency interactive relighting of translucent objects with single and multiple scattering , 2005, SIGGRAPH 2005.

[22]  Peter-Pike J. Sloan,et al.  Real-time soft shadows in dynamic scenes using spherical harmonic exponentiation , 2006, SIGGRAPH 2006.

[23]  Stephen H. Westin,et al.  A global illumination solution for general reflectance distributions , 1991, SIGGRAPH.

[24]  Golub Gene H. Et.Al Matrix Computations, 3rd Edition , 2007 .

[25]  James Arvo The Role of Functional Analysis in Global Illumination , 1995, Rendering Techniques.

[26]  David Blythe The Direct3D 10 system , 2006, SIGGRAPH 2006.

[27]  Samuli Laine,et al.  Ambient occlusion fields , 2005, I3D '05.

[28]  Kun Zhou,et al.  Precomputed shadow fields for dynamic scenes , 2005, SIGGRAPH 2005.

[29]  Gabriel Zachmann,et al.  Hardware-accelerated ambient occlusion computation , 2004, VMV.

[30]  Szymon Rusinkiewicz,et al.  Adaptive numerical cumulative distribution functions for efficient importance sampling , 2005, EGSR '05.

[31]  Michael Todd Bunnell,et al.  Dynamic Ambient Occlusion and Indirect Lighting , 2005 .

[32]  Jaakko Lehtinen,et al.  Soft shadow volumes for ray tracing , 2005, ACM Trans. Graph..

[33]  Shree K. Nayar,et al.  Reflectance and texture of real-world surfaces , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[34]  Piet Hut,et al.  A hierarchical O(N log N) force-calculation algorithm , 1986, Nature.

[35]  Holly E. Rushmeier,et al.  A progressive multi-pass method for global illumination , 1991, SIGGRAPH.

[36]  Donald P. Greenberg,et al.  The hemi-cube: a radiosity solution for complex environments , 1985, SIGGRAPH.

[37]  Turner Whitted,et al.  An improved illumination model for shaded display , 1998 .

[38]  R. Kress Linear Integral Equations , 1989 .

[39]  Greg Humphreys,et al.  Physically Based Rendering: From Theory to Implementation , 2004 .

[40]  Philipp Slusallek,et al.  Interactive Global Illumination using Fast Ray Tracing , 2002, Rendering Techniques.

[41]  Doug L. James,et al.  Precomputing interactive dynamic deformable scenes , 2003, ACM Trans. Graph..

[42]  Pat Hanrahan,et al.  All-frequency shadows using non-linear wavelet lighting approximation , 2003, ACM Trans. Graph..

[43]  Jitendra Malik,et al.  Recovering high dynamic range radiance maps from photographs , 1997, SIGGRAPH '08.

[44]  David Salesin,et al.  Global illumination of glossy environments using wavelets and importance , 1996, TOGS.

[45]  Eero P. Simoncelli,et al.  Efficient Linear Re-rendering for Interactive Lighting Design , 1997 .

[46]  Timo Aila,et al.  Ambient occlusion for animated characters , 2006, EGSR '06.

[47]  Robert L. Cook,et al.  Distributed ray tracing , 1998 .

[48]  Nicolas Holzschuch,et al.  Combining Higher-Order Wavelets and Discontinuity meshing: A Compact Representation for Radiosity , 2004, Rendering Techniques.

[49]  Zen-Chung Shih,et al.  All-frequency precomputed radiance transfer using spherical radial basis functions and clustered tensor approximation , 2006, ACM Trans. Graph..

[50]  Hans-Peter Seidel,et al.  View-independent environment maps , 1998, Workshop on Graphics Hardware.

[51]  H. Jensen Realistic Image Synthesis Using Photon Mapping , 2001 .

[52]  Pat Hanrahan,et al.  Beam tracing polygonal objects , 1984, SIGGRAPH.

[53]  Miloš Hašan,et al.  Direct-to-indirect transfer for cinematic relighting , 2006, SIGGRAPH 2006.

[54]  Hans-Peter Seidel,et al.  Interactive rendering of translucent objects , 2002, 10th Pacific Conference on Computer Graphics and Applications, 2002. Proceedings..

[55]  Jan Kautz,et al.  Precomputed radiance transfer for real-time rendering in dynamic, low-frequency lighting environments , 2002 .

[56]  Tomas Akenine-Möller,et al.  Precomputed local radiance transfer for real-time lighting design , 2005, SIGGRAPH 2005.

[57]  Doug L. James,et al.  Skinning mesh animations , 2005, ACM Trans. Graph..

[58]  Michael F. Cohen,et al.  Radiosity and realistic image synthesis , 1993 .

[59]  Nelson L. Max,et al.  Radiosity algorithms using higher order finite element methods , 1993, SIGGRAPH.

[60]  W. Hackbusch Integral Equations: Theory and Numerical Treatment , 1995 .

[61]  Philipp Slusallek,et al.  Interactive Global Illumination in Complex and Highly Occluded Environments , 2003, Rendering Techniques.

[62]  Stéphane Mallat,et al.  A Wavelet Tour of Signal Processing, 2nd Edition , 1999 .

[63]  D. Ghazanfarpour,et al.  A Beam Tracing with Precise Antialiasing for Polyhedral Scenes , 1997 .

[64]  J. Warren,et al.  Mean value coordinates for closed triangular meshes , 2005, SIGGRAPH 2005.

[65]  Kazufumi Kaneda,et al.  Method for Calculation of Sky Light Luminance Aiming at an Interactive Architectural Design , 1996, Comput. Graph. Forum.

[66]  Michael Garland,et al.  Face Cluster Radiosity , 1999, Rendering Techniques.

[67]  E. Kreyszig Introductory Functional Analysis With Applications , 1978 .

[68]  Philippe Bekaert,et al.  Advanced global illumination , 2006 .

[69]  Jan Kautz,et al.  Interactive rendering with arbitrary BRDFs using separable approximations , 1999, SIGGRAPH '99.

[70]  James T. Kajiya,et al.  The rendering equation , 1998 .

[71]  K. Atkinson The Numerical Solution of Integral Equations of the Second Kind , 1997 .

[72]  Rui Wang,et al.  All-frequency relighting of glossy objects , 2006, TOGS.

[73]  Wolfgang Heidrich,et al.  Bidirectional importance sampling for direct illumination , 2005, EGSR '05.

[74]  Per H. Christensen,et al.  Adjoints and Importance in Rendering: An Overview , 2003, IEEE Trans. Vis. Comput. Graph..

[75]  Frédo Durand,et al.  A frequency analysis of light transport , 2005, SIGGRAPH '05.

[76]  Donald P. Greenberg,et al.  Transparency for computer synthesized images , 1979, SIGGRAPH.

[77]  Frederick P. Brooks,et al.  Towards image realism with interactive update rates in complex virtual building environments , 1990, I3D '90.

[78]  Harold R. Zatz Galerkin radiosity: a higher order solution method for global illumination , 1993, SIGGRAPH.

[79]  James Arvo,et al.  Interactive design of complex time dependent lighting , 1995, IEEE Computer Graphics and Applications.

[80]  Janne Kontkanen,et al.  Wavelet radiance transport for interactive indirect lighting , 2006, EGSR '06.

[81]  F. E. Nicodemus,et al.  Geometrical considerations and nomenclature for reflectance , 1977 .

[82]  Donald P. Greenberg,et al.  A radiosity method for non-diffuse environments , 1986, SIGGRAPH.

[83]  James Arvo,et al.  A framework for the analysis of error in global illumination algorithms , 1994, SIGGRAPH.

[84]  Tomas Akenine-Möller,et al.  A geometry-based soft shadow volume algorithm using graphics hardware , 2003 .

[85]  Sergey Zhukov,et al.  An Ambient Light Illumination Model , 1998, Rendering Techniques.

[86]  Thomas Malzbender,et al.  Polynomial texture maps , 2001, SIGGRAPH.

[87]  P. Hanrahan,et al.  Wavelet Methods for Radiance Computations , 1995 .

[88]  Donald P. Greenberg,et al.  Modeling the interaction of light between diffuse surfaces , 1984, SIGGRAPH.

[89]  Julie Dorsey,et al.  Effic ient Re-rendering of Naturally Illuminated Environments , 1994 .