Behavior of R-estimators under measurement errors

As was shown recently, the measurement errors in regressors affect only the power of the rank test, but not its critical region. Noting that, we study the effect of measurement errors on R-estimators in linear model. It is demonstrated that while an R-estimator admits a local asymptotic bias, its bias surprisingly depends only on the precision of measurements and does neither depend on the chosen rank test score-generating function nor on the regression model error distribution. The R-estimators are numerically illustrated and compared with the LSE and $L_1$ estimators in this situation.

[1]  Siegfried Heiler,et al.  Asymptotic normality of r-estimates in the linear model , 1988 .

[2]  Kevin F. Hallock,et al.  Individual heterogeneity in the returns to schooling: instrumental variables quantile regression using twins data , 1999 .

[3]  Jan Picek,et al.  Rank tests for corrupted linear models , 2015, 1503.07003.

[4]  Jianqing Fan,et al.  Nonparametric regression with errors in variables , 1993 .

[5]  J. Jurecková,et al.  Nonparametric Estimate of Regression Coefficients , 1971 .

[6]  A. K. Md. Ehsanes Saleh,et al.  Rank tests and regression rank score tests in measurement error models , 2010, Comput. Stat. Data Anal..

[7]  Tiago A Marques Predicting and correcting bias caused by measurement error in line transect sampling using multiplicative error models. , 2004, Biometrics.

[8]  Louis A. Jaeckel Estimating Regression Coefficients by Minimizing the Dispersion of the Residuals , 1972 .

[9]  R. J. Adcock Note on the Method of Least Squares , 1877 .

[10]  D. Pollard Asymptotics for Least Absolute Deviation Regression Estimators , 1991, Econometric Theory.

[11]  Radim Navrátil Rank tests and R-estimates in location model with measurementerrors , 2012 .

[12]  Sudhir Gupta,et al.  Statistical Regression With Measurement Error , 1999, Technometrics.

[13]  David M. Rocke,et al.  A Two-Component Model for Measurement Error in Analytical Chemistry , 1995 .

[14]  Andrea Faber,et al.  Statistical Regression With Measurement Error , 2016 .

[15]  G. Imbens,et al.  Bias From Classical and Other Forms of Measurement Error , 2000 .

[16]  J. Hausman Mismeasured Variables in Econometric Analysis: Problems from the Right and Problems from the Left , 2001 .

[17]  Andrew W. Roddam,et al.  Measurement Error in Nonlinear Models: a Modern Perspective , 2008 .

[18]  Xuming He,et al.  Quantile Regression Estimates for a Class of Linear and Partially Linear Errors-in-Variables Models , 1997 .

[19]  D. Ruppert,et al.  Nonparametric regression in the presence of measurement error , 1999 .

[20]  J. Oosterhoff,et al.  A Note on Contiguity and Hellinger Distance , 2012 .

[21]  P. Hall,et al.  Non‐parametric regression estimation from data contaminated by a mixture of Berkson and classical errors , 2007, Journal of the Royal Statistical Society. Series B, Statistical methodology.

[22]  Raymond J. Carroll,et al.  Measurement error in nonlinear models: a modern perspective , 2006 .

[23]  Jana Jurečková,et al.  Asymptotic Linearity of a Rank Statistic in Regression Parameter , 1969 .

[24]  D. Ruppert,et al.  Measurement Error in Nonlinear Models , 1995 .

[25]  B. Kelly Some Aspects of Measurement Error in Linear Regression of Astronomical Data , 2007, 0705.2774.

[26]  J. L. Hodges,et al.  Estimates of Location Based on Rank Tests , 1963 .

[27]  A. K. Md. Ehsanes Saleh,et al.  R-estimation of the parameters of a multiple regression model with measurement errors , 2012 .

[28]  P. Sen,et al.  Theory of rank tests , 1969 .

[29]  Matthew A. Bershady,et al.  Linear Regression for Astronomical Data with Measurement Errors and Intrinsic Scatter , 1996, astro-ph/9605002.

[30]  Radim Navrátil,et al.  Rank tests of symmetry and R-estimation of location parameter under measurement errors , 2011 .

[31]  H. Koul Weighted Empirical Processes in Dynamic Nonlinear Models , 2002 .

[32]  Wayne A. Fuller,et al.  Measurement Error Models , 1988 .

[33]  Zbigniew Stojek,et al.  Quantifying uncertainty of determination by standard additions and serial dilutions methods taking into account standard uncertainties in both axes. , 2013, Analytical chemistry.